- -

On the way to ovules: The hormonal regulation of ovule development

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the way to ovules: The hormonal regulation of ovule development

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barro-Trastoy, Daniela es_ES
dc.contributor.author Gómez, María Dolores es_ES
dc.contributor.author Tornero Feliciano, Pablo es_ES
dc.contributor.author PEREZ AMADOR, MIGUEL ANGEL es_ES
dc.date.accessioned 2021-05-20T03:34:02Z
dc.date.available 2021-05-20T03:34:02Z
dc.date.issued 2020-10-07 es_ES
dc.identifier.issn 0735-2689 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166532
dc.description.abstract [EN] This review focuses on the hormonal regulation of ovule development, especially on ovule initiation, patterning, and morphogenesis. Understanding of the genetic and molecular basis of ovule development is essential from both the scientific and economic perspective. The ovule represents an attractive system to study lateral organ development in plants, and, since ovules are the precursors of seeds, full comprehension of this process can be the key to the improvement of crops, especially those depending on high production of seeds and grains. Ovule initiation, patterning, and morphogenesis are governed by complex genetic and hormonal networks involving auxins, cytokinins, brassinosteroids, and gibberellins. These coordinate the determination of the ovule number, size, and shape through the regulation of the number of ovule primordia that arise from the placenta and/or ensuring their correct development into mature functional ovules. Here we summarize the current knowledge of how ovules are formed, paying special attention to the roles of these four plant hormones. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry for Science and Innovation-FEDER under [grant BIO2017-83138R]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Critical Reviews in Plant Sciences es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Arabidopsis es_ES
dc.subject Auxins es_ES
dc.subject Brassinosteroids es_ES
dc.subject Cytokinins es_ES
dc.subject Development es_ES
dc.subject Gibberellins es_ES
dc.subject Hormones es_ES
dc.subject Integument es_ES
dc.subject Ovule es_ES
dc.subject Primordia es_ES
dc.subject Regulation es_ES
dc.title On the way to ovules: The hormonal regulation of ovule development es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/07352689.2020.1820203 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83138-R/ES/LAS GIBERELINAS EN EL CONTROL DE LA FORMACION DE OVULOS Y SEMILLAS: DISEÑO DE HERRAMIENTAS PARA LA MEJORA VEGETAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Barro-Trastoy, D.; Gómez, MD.; Tornero Feliciano, P.; Perez Amador, MA. (2020). On the way to ovules: The hormonal regulation of ovule development. Critical Reviews in Plant Sciences. 39(5):431-456. https://doi.org/10.1080/07352689.2020.1820203 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/07352689.2020.1820203 es_ES
dc.description.upvformatpinicio 431 es_ES
dc.description.upvformatpfin 456 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\433411 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011 es_ES
dc.description.references Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841 es_ES
dc.description.references Armenta-Medina, A., & Gillmor, C. S. (2019). Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Plant Development and Evolution, 497-543. doi:10.1016/bs.ctdb.2018.11.008 es_ES
dc.description.references Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development    . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751 es_ES
dc.description.references Baker, C. C., Sieber, P., Wellmer, F., & Meyerowitz, E. M. (2005). The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology, 15(4), 303-315. doi:10.1016/j.cub.2005.02.017 es_ES
dc.description.references Balasubramanian, S., & Schneitz, K. (2000). NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development, 127(19), 4227-4238. doi:10.1242/dev.127.19.4227 es_ES
dc.description.references Balasubramanian, S., & Schneitz, K. (2002). NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development, 129(18), 4291-4300. doi:10.1242/dev.129.18.4291 es_ES
dc.description.references Bao, F., Azhakanandam, S., & Franks, R. G. (2009). SEUSSandSEUSS-LIKETranscriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis. Plant Physiology, 152(2), 821-836. doi:10.1104/pp.109.146183 es_ES
dc.description.references Barro‐Trastoy, D., Carrera, E., Baños, J., Palau‐Rodríguez, J., Ruiz‐Rivero, O., Tornero, P., … Pérez‐Amador, M. A. (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal, 102(5), 1026-1041. doi:10.1111/tpj.14684 es_ES
dc.description.references Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana      . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079 es_ES
dc.description.references Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15-22. doi:10.1016/j.pbi.2019.08.009 es_ES
dc.description.references Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164 es_ES
dc.description.references Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3 es_ES
dc.description.references BERRY, P. M., & SPINK, J. H. (2009). Understanding the effect of a triazole with anti-gibberellin activity on the growth and yield of oilseed rape (Brassica napus). The Journal of Agricultural Science, 147(3), 273-285. doi:10.1017/s0021859609008491 es_ES
dc.description.references BOUTTIER, C., & MORGAN, D. G. (1992). Ovule Development and Determination of Seed Number Per Pod in Oilseed Rape (Brassica napusL.). Journal of Experimental Botany, 43(5), 709-714. doi:10.1093/jxb/43.5.709 es_ES
dc.description.references Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112(1), 1-20. doi:10.1242/dev.112.1.1 es_ES
dc.description.references Brambilla, V., Battaglia, R., Colombo, M., Masiero, S., Bencivenga, S., Kater, M. M., & Colombo, L. (2007). Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development inArabidopsis. The Plant Cell, 19(8), 2544-2556. doi:10.1105/tpc.107.051797 es_ES
dc.description.references Broadhvest, J., Baker, S. C., & Gasser, C. S. (2000). SHORT INTEGUMENTS 2 Promotes Growth During Arabidopsis Reproductive Development. Genetics, 155(2), 899-907. doi:10.1093/genetics/155.2.899 es_ES
dc.description.references Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., & Stepanova, A. N. (2018). Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 47(3), 306-318.e5. doi:10.1016/j.devcel.2018.09.022 es_ES
dc.description.references Carter, B., Henderson, J. T., Svedin, E., Fiers, M., McCarthy, K., Smith, A., … Ogas, J. (2016). Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in Arabidopsis thaliana. Genetics, 203(2), 817-829. doi:10.1534/genetics.115.180141 es_ES
dc.description.references Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F. A., … Colombo, L. (2013). Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 8(6), e66148. doi:10.1371/journal.pone.0066148 es_ES
dc.description.references Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R. K., Schellenberg, M., & Schneitz, K. (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences, 102(25), 9074-9079. doi:10.1073/pnas.0503526102 es_ES
dc.description.references Christensen, C. A., King, E. J., Jordan, J. R., & Drews, G. N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction, 10(1), 49-64. doi:10.1007/s004970050067 es_ES
dc.description.references Conner, J., & Liu, Z. (2000). LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proceedings of the National Academy of Sciences, 97(23), 12902-12907. doi:10.1073/pnas.230352397 es_ES
dc.description.references Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117 es_ES
dc.description.references Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050 es_ES
dc.description.references Cucinotta, M., Manrique, S., Cuesta, C., Benkova, E., Novak, O., & Colombo, L. (2018). CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. Journal of Experimental Botany, 69(21), 5169-5176. doi:10.1093/jxb/ery281 es_ES
dc.description.references Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545 es_ES
dc.description.references Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011 es_ES
dc.description.references Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. doi:10.1016/j.pbi.2016.09.003 es_ES
dc.description.references Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., … Smyth, D. R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8(2), 155-168. doi:10.1105/tpc.8.2.155 es_ES
dc.description.references Endress, P. K. (2011). Angiosperm ovules: diversity, development, evolution. Annals of Botany, 107(9), 1465-1489. doi:10.1093/aob/mcr120 es_ES
dc.description.references Enugutti, B., & Schneitz, K. (2013). Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology, 13(1), 2. doi:10.1186/1471-2229-13-2 es_ES
dc.description.references Enugutti, B., Kirchhelle, C., Oelschner, M., Torres Ruiz, R. A., Schliebner, I., Leister, D., & Schneitz, K. (2012). Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proceedings of the National Academy of Sciences, 109(37), 15060-15065. doi:10.1073/pnas.1205089109 es_ES
dc.description.references Erbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016 es_ES
dc.description.references Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. doi:10.1016/s0960-9822(01)00392-x es_ES
dc.description.references Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123 es_ES
dc.description.references Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0 es_ES
dc.description.references Franks, R. G., Wang, C., Levin, J. Z., & Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG. Development, 129(1), 253-263. doi:10.1242/dev.129.1.253 es_ES
dc.description.references Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24-31. doi:10.1016/j.plantsci.2013.04.002 es_ES
dc.description.references Friedt, W., Tu, J., & Fu, T. (2018). Academic and Economic Importance of Brassica napus Rapeseed. The Brassica napus Genome, 1-20. doi:10.1007/978-3-319-43694-4_1 es_ES
dc.description.references Gaiser, J. C., Robinson-Beers, K., & Gasser, C. S. (1995). The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. The Plant Cell, 7(3), 333. doi:10.2307/3869855 es_ES
dc.description.references Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309 es_ES
dc.description.references Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal, 79(6), 1020-1032. doi:10.1111/tpj.12603 es_ES
dc.description.references Gasser, C. S., & Skinner, D. J. (2019). Development and evolution of the unique ovules of flowering plants. Plant Development and Evolution, 373-399. doi:10.1016/bs.ctdb.2018.10.007 es_ES
dc.description.references Gifford, M. L., Dean, S., & Ingram, G. C. (2003). TheArabidopsis ACR4gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development, 130(18), 4249-4258. doi:10.1242/dev.00634 es_ES
dc.description.references Goldental-Cohen, S., Israeli, A., Ori, N., & Yasuor, H. (2017). Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato. Plant and Cell Physiology, 58(10), 1661-1672. doi:10.1093/pcp/pcx102 es_ES
dc.description.references Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865 es_ES
dc.description.references Gomez, M. D., Barro-Trastoy, D., Fuster-Almunia, C., Tornero, P., Alonso, J. M., & Perez-Amador, M. A. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 71(22), 7059-7072. doi:10.1093/jxb/eraa395 es_ES
dc.description.references Gómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014 es_ES
dc.description.references Gomez, M. D., Urbez, C., Perez-Amador, M. A., & Carbonell, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE, 6(4), e18760. doi:10.1371/journal.pone.0018760 es_ES
dc.description.references Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231 es_ES
dc.description.references Gonçalves, B., Hasson, A., Belcram, K., Cortizo, M., Morin, H., Nikovics, K., … Arnaud, N. (2015). A conserved role forCUP-SHAPED COTYLEDONgenes during ovule development. The Plant Journal, 83(4), 732-742. doi:10.1111/tpj.12923 es_ES
dc.description.references Grobeta-Hardt, R. (2002). WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & Development, 16(9), 1129-1138. doi:10.1101/gad.225202 es_ES
dc.description.references Hashimoto, K., Miyashima, S., Sato-Nara, K., Yamada, T., & Nakajima, K. (2018). Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 59(5), 1017-1026. doi:10.1093/pcp/pcy042 es_ES
dc.description.references Hauser, B. A., He, J. Q., Park, S. O., & Gasser, C. S. (2000). TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development, 127(10), 2219-2226. doi:10.1242/dev.127.10.2219 es_ES
dc.description.references Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1 es_ES
dc.description.references Heisler, M. G., & Byrne, M. E. (2020). Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 53, 73-79. doi:10.1016/j.pbi.2019.10.007 es_ES
dc.description.references Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., & Meyerowitz, E. M. (2005). Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 15(21), 1899-1911. doi:10.1016/j.cub.2005.09.052 es_ES
dc.description.references Hibara, K., Takada, S., & Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal, 36(5), 687-696. doi:10.1046/j.1365-313x.2003.01911.x es_ES
dc.description.references Hill, T. A., Broadhvest, J., Kuzoff, R. K., & Gasser, C. S. (2006). Arabidopsis SHORT INTEGUMENTS 2 Is a Mitochondrial DAR GTPase. Genetics, 174(2), 707-718. doi:10.1534/genetics.106.060657 es_ES
dc.description.references Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070 es_ES
dc.description.references Hwang, I., Sheen, J., & Müller, B. (2012). Cytokinin Signaling Networks. Annual Review of Plant Biology, 63(1), 353-380. doi:10.1146/annurev-arplant-042811-105503 es_ES
dc.description.references Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60 es_ES
dc.description.references Jia, D., Chen, L., Yin, G., Yang, X., Gao, Z., Guo, Y., … Tang, W. (2020). Brassinosteroids regulate outer ovule integument growth in part via the control ofINNER NO OUTERby BRASSINOZOLE‐RESISTANT family transcription factors. Journal of Integrative Plant Biology, 62(8), 1093-1111. doi:10.1111/jipb.12915 es_ES
dc.description.references Jung, J.-H., & Park, C.-M. (2006). MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 225(6), 1327-1338. doi:10.1007/s00425-006-0439-1 es_ES
dc.description.references Kelley, D. R., Arreola, A., Gallagher, T. L., & Gasser, C. S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development, 139(6), 1105-1109. doi:10.1242/dev.067918 es_ES
dc.description.references Kelley, D. R., Skinner, D. J., & Gasser, C. S. (2009). Roles of polarity determinants in ovule development. The Plant Journal, 57(6), 1054-1064. doi:10.1111/j.1365-313x.2008.03752.x es_ES
dc.description.references Khan, S. U., Yangmiao, J., Liu, S., Zhang, K., Khan, M. H. U., Zhai, Y., … Zhou, Y. (2019). Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Industrial Crops and Products, 142, 111877. doi:10.1016/j.indcrop.2019.111877 es_ES
dc.description.references Klucher, K. M., Chow, H., Reiser, L., & Fischer, R. L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 8(2), 137-153. doi:10.1105/tpc.8.2.137 es_ES
dc.description.references Krizek, B. A. (1999). Ectopic expression ofAINTEGUMENTA inArabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25(3), 224-236. doi:10.1002/(sici)1520-6408(1999)25:3<224::aid-dvg5>3.0.co;2-y es_ES
dc.description.references Krizek, B. A., Blakley, I. C., Ho, Y., Freese, N., & Loraine, A. E. (2020). The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. The Plant Journal, 103(2), 752-768. doi:10.1111/tpj.14769 es_ES
dc.description.references Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951 es_ES
dc.description.references Larsson, E., Vivian-Smith, A., Offringa, R., & Sundberg, E. (2017). Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01735 es_ES
dc.description.references Laufs, P., Peaucelle, A., Morin, H., & Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17), 4311-4322. doi:10.1242/dev.01320 es_ES
dc.description.references Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971 es_ES
dc.description.references Leyser, O. (2017). Auxin Signaling. Plant Physiology, 176(1), 465-479. doi:10.1104/pp.17.00765 es_ES
dc.description.references Li, L., Qin, G., Tsuge, T., Hou, X., Ding, M., Aoyama, T., … Qu, L. (2008). SPOROCYTELESSmodulatesYUCCAexpression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 179(3), 751-764. doi:10.1111/j.1469-8137.2008.02514.x es_ES
dc.description.references Liao, S., Wang, L., Li, J., & Ruan, Y.-L. (2020). Cell Wall Invertase Is Essential for Ovule Development through Sugar Signaling Rather Than Provision of Carbon Nutrients. Plant Physiology, 183(3), 1126-1144. doi:10.1104/pp.20.00400 es_ES
dc.description.references Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015 es_ES
dc.description.references Lituiev, D. S., Krohn, N. G., Müller, B., Jackson, D., Hellriegel, B., Dresselhaus, T., & Grossniklaus, U. (2013). Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development, 140(22), 4544-4553. doi:10.1242/dev.098301 es_ES
dc.description.references Liu, H.-H., Xiong, F., Duan, C.-Y., Wu, Y.-N., Zhang, Y., & Li, S. (2019). Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. Plant Physiology, 179(3), 1080-1092. doi:10.1104/pp.18.01135 es_ES
dc.description.references Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879 es_ES
dc.description.references Lora, J., Yang, X., & Tucker, M. R. (2019). Establishing a framework for female germline initiation in the plant ovule. Journal of Experimental Botany, 70(11), 2937-2949. doi:10.1093/jxb/erz212 es_ES
dc.description.references Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs. Current Biology, 14(12), 1035-1046. doi:10.1016/j.cub.2004.06.022 es_ES
dc.description.references La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723 es_ES
dc.description.references Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006 es_ES
dc.description.references Matilla, A. J. (2019). Seed coat formation: its evolution and regulation. Seed Science Research, 29(4), 215-226. doi:10.1017/s0960258519000254 es_ES
dc.description.references McAbee, J. M., Hill, T. A., Skinner, D. J., Izhaki, A., Hauser, B. A., Meister, R. J., … Gasser, C. S. (2006). ABERRANT TESTA SHAPEencodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal, 46(3), 522-531. doi:10.1111/j.1365-313x.2006.02717.x es_ES
dc.description.references Meister, R. J., Kotow, L. M., and Gasser, C. S. 2002. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development 129:4281–4289. es_ES
dc.description.references Mendham, N. J., Shipway, P. A., & Scott, R. K. (1981). The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). The Journal of Agricultural Science, 96(2), 389-416. doi:10.1017/s002185960006617x es_ES
dc.description.references Mizukami, Y., & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, 97(2), 942-947. doi:10.1073/pnas.97.2.942 es_ES
dc.description.references Modrusan, Z., Reiser, L., Feldmann, K. A., Fischer, R. L., & Haughn, G. W. (1994). Homeotic Transformation of Ovules into Carpel-Like Structures in Arabidopsis. The Plant Cell, 6(3), 333. doi:10.2307/3869754 es_ES
dc.description.references Nemhauser, J. L., Feldman, L. J., & Zambryski, P. C. (2000). Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127(18), 3877-3888. doi:10.1242/dev.127.18.3877 es_ES
dc.description.references Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., & Laufs, P. (2006). The Balance between theMIR164AandCUC2Genes Controls Leaf Margin Serration inArabidopsis. The Plant Cell, 18(11), 2929-2945. doi:10.1105/tpc.106.045617 es_ES
dc.description.references Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., & Ueguchi, C. (2004). Histidine Kinase Homologs That Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of Shoot and Root Growth in Arabidopsis. The Plant Cell, 16(6), 1365-1377. doi:10.1105/tpc.021477 es_ES
dc.description.references Nole-Wilson, S., & Krizek, B. A. (2006). AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes. Plant Physiology, 141(3), 977-987. doi:10.1104/pp.106.076604 es_ES
dc.description.references Nole-Wilson, S., Azhakanandam, S., & Franks, R. G. (2010). Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology, 346(2), 181-195. doi:10.1016/j.ydbio.2010.07.016 es_ES
dc.description.references Nole-Wilson, S., Rueschhoff, E. E., Bhatti, H., & Franks, R. G. (2010). Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biology, 10(1). doi:10.1186/1471-2229-10-198 es_ES
dc.description.references Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The Last Reaction Producing Brassinolide Is Catalyzed by Cytochrome P-450s, CYP85A3 in Tomato and CYP85A2 in Arabidopsis. Journal of Biological Chemistry, 280(18), 17873-17879. doi:10.1074/jbc.m414592200 es_ES
dc.description.references Okada, K., Ueda, J., Komaki, M. K., Bell, C. J., & Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. The Plant Cell, 3(7), 677. doi:10.2307/3869249 es_ES
dc.description.references Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin Control of Root Development. Cold Spring Harbor Perspectives in Biology, 2(6), a001537-a001537. doi:10.1101/cshperspect.a001537 es_ES
dc.description.references Pajoro, A., Biewers, S., Dougali, E., Leal Valentim, F., Mendes, M. A., Porri, A., … Angenent, G. C. (2014). The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. Journal of Experimental Botany, 65(17), 4731-4745. doi:10.1093/jxb/eru233 es_ES
dc.description.references Park, S. O., Zheng, Z., Oppenheimer, D. G., & Hauser, B. A. (2005). ThePRETTY FEW SEEDS2gene encodes anArabidopsishomeodomain protein that regulates ovule development. Development, 132(4), 841-849. doi:10.1242/dev.01654 es_ES
dc.description.references Pattison, R. J., & Catalá, C. (2012). Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal, 70(4), 585-598. doi:10.1111/j.1365-313x.2011.04895.x es_ES
dc.description.references Pérez-España, V. H., Sánchez-León, N., & Vielle-Calzada, J.-P. (2011). CYP85A1is required for the initiation of female gametogenesis inArabidopsis thaliana. Plant Signaling & Behavior, 6(3), 321-326. doi:10.4161/psb.6.3.13206 es_ES
dc.description.references Phillips, A. R., & Evans, M. M. S. (2020). Maternal regulation of seed growth and patterning in flowering plants. Maternal Effect Genes in Development, 257-282. doi:10.1016/bs.ctdb.2019.10.008 es_ES
dc.description.references Pillitteri, L. J., Bemis, S. M., Shpak, E. D., & Torii, K. U. (2007). Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development, 134(17), 3099-3109. doi:10.1242/dev.004788 es_ES
dc.description.references Pinto, S. C., Mendes, M. A., Coimbra, S., & Tucker, M. R. (2019). Revisiting the Female Germline and Its Expanding Toolbox. Trends in Plant Science, 24(5), 455-467. doi:10.1016/j.tplants.2019.02.003 es_ES
dc.description.references Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741 es_ES
dc.description.references Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5). doi:10.1242/dev.151894 es_ES
dc.description.references Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8 es_ES
dc.description.references Reyes-Olalde, J. I., & de Folter, S. (2019). Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reproduction, 32(2), 123-136. doi:10.1007/s00497-018-00359-0 es_ES
dc.description.references Reyes-Olalde, J. I., Zúñiga-Mayo, V. M., Serwatowska, J., Chavez Montes, R. A., Lozano-Sotomayor, P., Herrera-Ubaldo, H., … de Folter, S. (2017). The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLOS Genetics, 13(4), e1006726. doi:10.1371/journal.pgen.1006726 es_ES
dc.description.references Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of Plant MicroRNA Targets. Cell, 110(4), 513-520. doi:10.1016/s0092-8674(02)00863-2 es_ES
dc.description.references Rizza, A., & Jones, A. M. (2019). The makings of a gradient: spatiotemporal distribution of gibberellins in plant development. Current Opinion in Plant Biology, 47, 9-15. doi:10.1016/j.pbi.2018.08.001 es_ES
dc.description.references Robinson-Beers, K., Pruitt, R. E., & Gasser, C. S. (1992). Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. The Plant Cell, 4(10), 1237. doi:10.2307/3869410 es_ES
dc.description.references Rodríguez-Cazorla, E., Ortuño-Miquel, S., Candela, H., Bailey-Steinitz, L. J., Yanofsky, M. F., Martínez-Laborda, A., … Vera, A. (2018). Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLOS Genetics, 14(1), e1007182. doi:10.1371/journal.pgen.1007182 es_ES
dc.description.references Rodríguez‐Cazorla, E., Ripoll, J., Ortuño‐Miquel, S., Martínez‐Laborda, A., & Vera, A. (2020). Dissection of the Arabidopsis HUA‐PEP gene activity reveals that ovule fate specification requires restriction of the floral A‐function. New Phytologist, 227(4), 1222-1234. doi:10.1111/nph.16589 es_ES
dc.description.references Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., … Schönenberger, J. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications, 8(1). doi:10.1038/ncomms16047 es_ES
dc.description.references Schauer, S. E., Jacobsen, S. E., Meinke, D. W., & Ray, A. (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends in Plant Science, 7(11), 487-491. doi:10.1016/s1360-1385(02)02355-5 es_ES
dc.description.references Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664 es_ES
dc.description.references Schneitz, K., Baker, S. C., Gasser, C. S., & Redweik, A. (1998). Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 125(14), 2555-2563. doi:10.1242/dev.125.14.2555 es_ES
dc.description.references Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.x es_ES
dc.description.references Schneitz, K., Hulskamp, M., Kopczak, S. D., & Pruitt, R. E. (1997). Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development, 124(7), 1367-1376. doi:10.1242/dev.124.7.1367 es_ES
dc.description.references Schubert, R., Dobritzsch, S., Gruber, C., Hause, G., Athmer, B., Schreiber, T., … Hause, B. (2019). Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility. The Plant Cell, 31(5), 1043-1062. doi:10.1105/tpc.18.00978 es_ES
dc.description.references Shi, J., Zhan, J., Yang, Y., Ye, J., Huang, S., Li, R., … Wang, H. (2015). Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Scientific Reports, 5(1). doi:10.1038/srep14481 es_ES
dc.description.references Shirley, N. J., Aubert, M. K., Wilkinson, L. G., Bird, D. C., Lora, J., Yang, X., & Tucker, M. R. (2019). Translating auxin responses into ovules, seeds and yield: Insight from Arabidopsis and the cereals. Journal of Integrative Plant Biology, 61(3), 310-336. doi:10.1111/jipb.12747 es_ES
dc.description.references Sieber, P., Gheyselinck, J., Gross-Hardt, R., Laux, T., Grossniklaus, U., & Schneitz, K. (2004). Pattern formation during early ovule development in Arabidopsis thaliana. Developmental Biology, 273(2), 321-334. doi:10.1016/j.ydbio.2004.05.037 es_ES
dc.description.references Šimášková, M., O’Brien, J. A., Khan, M., Van Noorden, G., Ötvös, K., Vieten, A., … Benková, E. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 6(1). doi:10.1038/ncomms9717 es_ES
dc.description.references Simon, M. K., Skinner, D. J., Gallagher, T. L., & Gasser, C. S. (2017). Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics, 207(4), 1489-1500. doi:10.1534/genetics.117.300140 es_ES
dc.description.references Simonini, S., & Østergaard, L. (2019). Female reproductive organ formation: A multitasking endeavor. Plant Development and Evolution, 337-371. doi:10.1016/bs.ctdb.2018.10.004 es_ES
dc.description.references Smaczniak, C., Immink, R. G. H., Angenent, G. C., & Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 139(17), 3081-3098. doi:10.1242/dev.074674 es_ES
dc.description.references Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2(8), 755-767. doi:10.1105/tpc.2.8.755 es_ES
dc.description.references Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.x es_ES
dc.description.references Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036 es_ES
dc.description.references Tanaka, H., Watanabe, M., Sasabe, M., Hiroe, T., Tanaka, T., Tsukaya, H., … Machida, Y. (2007). Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis inArabidopsis. Development, 134(9), 1643-1652. doi:10.1242/dev.003533 es_ES
dc.description.references Thomson, B., & Wellmer, F. (2019). Molecular regulation of flower development. Plant Development and Evolution, 185-210. doi:10.1016/bs.ctdb.2018.11.007 es_ES
dc.description.references Truernit, E., & Haseloff, J. (2008). Arabidopsis thaliana outer ovule integument morphogenesis: Ectopic expression of KNAT1 reveals a compensation mechanism. BMC Plant Biology, 8(1), 35. doi:10.1186/1471-2229-8-35 es_ES
dc.description.references Van der Knaap, E., Chakrabarti, M., Chu, Y. H., Clevenger, J. P., Illa-Berenguer, E., Huang, Z., … Wu, S. (2014). What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00227 es_ES
dc.description.references Villanueva, J. M., Broadhvest, J., Hauser, B. A., Meister, R. J., Schneitz, K., & Gasser, C. S. (1999). INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes & Development, 13(23), 3160-3169. doi:10.1101/gad.13.23.3160 es_ES
dc.description.references Vroemen, C. W., Mordhorst, A. P., Albrecht, C., Kwaaitaal, M. A. C. J., & de Vries, S. C. (2003). The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis. The Plant Cell, 15(7), 1563-1577. doi:10.1105/tpc.012203 es_ES
dc.description.references Wang, H., Liu, Y., Bruffett, K., Lee, J., Hause, G., Walker, J. C., & Zhang, S. (2008). Haplo-Insufficiency ofMPK3inMPK6Mutant Background Uncovers a Novel Function of These Two MAPKs inArabidopsisOvule Development. The Plant Cell, 20(3), 602-613. doi:10.1105/tpc.108.058032 es_ES
dc.description.references Wang, Y., & Jiao, Y. (2017). Auxin and above-ground meristems. Journal of Experimental Botany, 69(2), 147-154. doi:10.1093/jxb/erx299 es_ES
dc.description.references Wei, S.-J., Chai, S., Zhu, R.-M., Duan, C.-Y., Zhang, Y., & Li, S. (2020). HUA ENHANCER1 Mediates Ovule Development. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00397 es_ES
dc.description.references Weijers, D., Nemhauser, J., & Yang, Z. (2018). Auxin: small molecule, big impact. Journal of Experimental Botany, 69(2), 133-136. doi:10.1093/jxb/erx463 es_ES
dc.description.references Wynn, A. N., Seaman, A. A., Jones, A. L., & Franks, R. G. (2014). Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00130 es_ES
dc.description.references Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1). doi:10.1186/1471-2229-9-49 es_ES
dc.description.references Yamada, T., Sasaki, Y., Hashimoto, K., Nakajima, K., & Gasser, C. S. (2015). CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL 1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules. Development. doi:10.1242/dev.129833 es_ES
dc.description.references Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., … Wagner, D. (2013). A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Developmental Cell, 24(3), 271-282. doi:10.1016/j.devcel.2012.12.017 es_ES
dc.description.references Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108 es_ES
dc.description.references Yuan, J., & Kessler, S. A. (2019). A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana. PLOS Genetics, 15(2), e1007934. doi:10.1371/journal.pgen.1007934 es_ES
dc.description.references Žádníková, P., & Simon, R. (2014). How boundaries control plant development. Current Opinion in Plant Biology, 17, 116-125. doi:10.1016/j.pbi.2013.11.013 es_ES
dc.description.references Zhou, J.-J., & Luo, J. (2018). The PIN-FORMED Auxin Efflux Carriers in Plants. International Journal of Molecular Sciences, 19(9), 2759. doi:10.3390/ijms19092759 es_ES
dc.description.references Zuñiga-Mayo, V. M., Baños-Bayardo, C. R., Díaz-Ramírez, D., Marsch-Martínez, N., & de Folter, S. (2018). Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Scientific Reports, 8(1). doi:10.1038/s41598-018-25017-3 es_ES
dc.description.references Zúñiga-Mayo, V. M., Gómez-Felipe, A., Herrera-Ubaldo, H., & de Folter, S. (2019). Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany, 70(5), 1447-1460. doi:10.1093/jxb/erz026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem