Mostrar el registro sencillo del ítem
dc.contributor.author | Barro-Trastoy, Daniela | es_ES |
dc.contributor.author | Gómez, María Dolores | es_ES |
dc.contributor.author | Tornero Feliciano, Pablo | es_ES |
dc.contributor.author | PEREZ AMADOR, MIGUEL ANGEL | es_ES |
dc.date.accessioned | 2021-05-20T03:34:02Z | |
dc.date.available | 2021-05-20T03:34:02Z | |
dc.date.issued | 2020-10-07 | es_ES |
dc.identifier.issn | 0735-2689 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166532 | |
dc.description.abstract | [EN] This review focuses on the hormonal regulation of ovule development, especially on ovule initiation, patterning, and morphogenesis. Understanding of the genetic and molecular basis of ovule development is essential from both the scientific and economic perspective. The ovule represents an attractive system to study lateral organ development in plants, and, since ovules are the precursors of seeds, full comprehension of this process can be the key to the improvement of crops, especially those depending on high production of seeds and grains. Ovule initiation, patterning, and morphogenesis are governed by complex genetic and hormonal networks involving auxins, cytokinins, brassinosteroids, and gibberellins. These coordinate the determination of the ovule number, size, and shape through the regulation of the number of ovule primordia that arise from the placenta and/or ensuring their correct development into mature functional ovules. Here we summarize the current knowledge of how ovules are formed, paying special attention to the roles of these four plant hormones. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry for Science and Innovation-FEDER under [grant BIO2017-83138R]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Critical Reviews in Plant Sciences | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | Auxins | es_ES |
dc.subject | Brassinosteroids | es_ES |
dc.subject | Cytokinins | es_ES |
dc.subject | Development | es_ES |
dc.subject | Gibberellins | es_ES |
dc.subject | Hormones | es_ES |
dc.subject | Integument | es_ES |
dc.subject | Ovule | es_ES |
dc.subject | Primordia | es_ES |
dc.subject | Regulation | es_ES |
dc.title | On the way to ovules: The hormonal regulation of ovule development | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/07352689.2020.1820203 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83138-R/ES/LAS GIBERELINAS EN EL CONTROL DE LA FORMACION DE OVULOS Y SEMILLAS: DISEÑO DE HERRAMIENTAS PARA LA MEJORA VEGETAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Barro-Trastoy, D.; Gómez, MD.; Tornero Feliciano, P.; Perez Amador, MA. (2020). On the way to ovules: The hormonal regulation of ovule development. Critical Reviews in Plant Sciences. 39(5):431-456. https://doi.org/10.1080/07352689.2020.1820203 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/07352689.2020.1820203 | es_ES |
dc.description.upvformatpinicio | 431 | es_ES |
dc.description.upvformatpfin | 456 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 39 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\433411 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011 | es_ES |
dc.description.references | Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841 | es_ES |
dc.description.references | Armenta-Medina, A., & Gillmor, C. S. (2019). Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Plant Development and Evolution, 497-543. doi:10.1016/bs.ctdb.2018.11.008 | es_ES |
dc.description.references | Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751 | es_ES |
dc.description.references | Baker, C. C., Sieber, P., Wellmer, F., & Meyerowitz, E. M. (2005). The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology, 15(4), 303-315. doi:10.1016/j.cub.2005.02.017 | es_ES |
dc.description.references | Balasubramanian, S., & Schneitz, K. (2000). NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development, 127(19), 4227-4238. doi:10.1242/dev.127.19.4227 | es_ES |
dc.description.references | Balasubramanian, S., & Schneitz, K. (2002). NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development, 129(18), 4291-4300. doi:10.1242/dev.129.18.4291 | es_ES |
dc.description.references | Bao, F., Azhakanandam, S., & Franks, R. G. (2009). SEUSSandSEUSS-LIKETranscriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis. Plant Physiology, 152(2), 821-836. doi:10.1104/pp.109.146183 | es_ES |
dc.description.references | Barro‐Trastoy, D., Carrera, E., Baños, J., Palau‐Rodríguez, J., Ruiz‐Rivero, O., Tornero, P., … Pérez‐Amador, M. A. (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal, 102(5), 1026-1041. doi:10.1111/tpj.14684 | es_ES |
dc.description.references | Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079 | es_ES |
dc.description.references | Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15-22. doi:10.1016/j.pbi.2019.08.009 | es_ES |
dc.description.references | Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164 | es_ES |
dc.description.references | Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3 | es_ES |
dc.description.references | BERRY, P. M., & SPINK, J. H. (2009). Understanding the effect of a triazole with anti-gibberellin activity on the growth and yield of oilseed rape (Brassica napus). The Journal of Agricultural Science, 147(3), 273-285. doi:10.1017/s0021859609008491 | es_ES |
dc.description.references | BOUTTIER, C., & MORGAN, D. G. (1992). Ovule Development and Determination of Seed Number Per Pod in Oilseed Rape (Brassica napusL.). Journal of Experimental Botany, 43(5), 709-714. doi:10.1093/jxb/43.5.709 | es_ES |
dc.description.references | Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112(1), 1-20. doi:10.1242/dev.112.1.1 | es_ES |
dc.description.references | Brambilla, V., Battaglia, R., Colombo, M., Masiero, S., Bencivenga, S., Kater, M. M., & Colombo, L. (2007). Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development inArabidopsis. The Plant Cell, 19(8), 2544-2556. doi:10.1105/tpc.107.051797 | es_ES |
dc.description.references | Broadhvest, J., Baker, S. C., & Gasser, C. S. (2000). SHORT INTEGUMENTS 2 Promotes Growth During Arabidopsis Reproductive Development. Genetics, 155(2), 899-907. doi:10.1093/genetics/155.2.899 | es_ES |
dc.description.references | Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., & Stepanova, A. N. (2018). Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 47(3), 306-318.e5. doi:10.1016/j.devcel.2018.09.022 | es_ES |
dc.description.references | Carter, B., Henderson, J. T., Svedin, E., Fiers, M., McCarthy, K., Smith, A., … Ogas, J. (2016). Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in Arabidopsis thaliana. Genetics, 203(2), 817-829. doi:10.1534/genetics.115.180141 | es_ES |
dc.description.references | Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F. A., … Colombo, L. (2013). Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 8(6), e66148. doi:10.1371/journal.pone.0066148 | es_ES |
dc.description.references | Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R. K., Schellenberg, M., & Schneitz, K. (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences, 102(25), 9074-9079. doi:10.1073/pnas.0503526102 | es_ES |
dc.description.references | Christensen, C. A., King, E. J., Jordan, J. R., & Drews, G. N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction, 10(1), 49-64. doi:10.1007/s004970050067 | es_ES |
dc.description.references | Conner, J., & Liu, Z. (2000). LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proceedings of the National Academy of Sciences, 97(23), 12902-12907. doi:10.1073/pnas.230352397 | es_ES |
dc.description.references | Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117 | es_ES |
dc.description.references | Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050 | es_ES |
dc.description.references | Cucinotta, M., Manrique, S., Cuesta, C., Benkova, E., Novak, O., & Colombo, L. (2018). CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. Journal of Experimental Botany, 69(21), 5169-5176. doi:10.1093/jxb/ery281 | es_ES |
dc.description.references | Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545 | es_ES |
dc.description.references | Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011 | es_ES |
dc.description.references | Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. doi:10.1016/j.pbi.2016.09.003 | es_ES |
dc.description.references | Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., … Smyth, D. R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8(2), 155-168. doi:10.1105/tpc.8.2.155 | es_ES |
dc.description.references | Endress, P. K. (2011). Angiosperm ovules: diversity, development, evolution. Annals of Botany, 107(9), 1465-1489. doi:10.1093/aob/mcr120 | es_ES |
dc.description.references | Enugutti, B., & Schneitz, K. (2013). Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology, 13(1), 2. doi:10.1186/1471-2229-13-2 | es_ES |
dc.description.references | Enugutti, B., Kirchhelle, C., Oelschner, M., Torres Ruiz, R. A., Schliebner, I., Leister, D., & Schneitz, K. (2012). Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proceedings of the National Academy of Sciences, 109(37), 15060-15065. doi:10.1073/pnas.1205089109 | es_ES |
dc.description.references | Erbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016 | es_ES |
dc.description.references | Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. doi:10.1016/s0960-9822(01)00392-x | es_ES |
dc.description.references | Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123 | es_ES |
dc.description.references | Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0 | es_ES |
dc.description.references | Franks, R. G., Wang, C., Levin, J. Z., & Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG. Development, 129(1), 253-263. doi:10.1242/dev.129.1.253 | es_ES |
dc.description.references | Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24-31. doi:10.1016/j.plantsci.2013.04.002 | es_ES |
dc.description.references | Friedt, W., Tu, J., & Fu, T. (2018). Academic and Economic Importance of Brassica napus Rapeseed. The Brassica napus Genome, 1-20. doi:10.1007/978-3-319-43694-4_1 | es_ES |
dc.description.references | Gaiser, J. C., Robinson-Beers, K., & Gasser, C. S. (1995). The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. The Plant Cell, 7(3), 333. doi:10.2307/3869855 | es_ES |
dc.description.references | Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309 | es_ES |
dc.description.references | Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal, 79(6), 1020-1032. doi:10.1111/tpj.12603 | es_ES |
dc.description.references | Gasser, C. S., & Skinner, D. J. (2019). Development and evolution of the unique ovules of flowering plants. Plant Development and Evolution, 373-399. doi:10.1016/bs.ctdb.2018.10.007 | es_ES |
dc.description.references | Gifford, M. L., Dean, S., & Ingram, G. C. (2003). TheArabidopsis ACR4gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development, 130(18), 4249-4258. doi:10.1242/dev.00634 | es_ES |
dc.description.references | Goldental-Cohen, S., Israeli, A., Ori, N., & Yasuor, H. (2017). Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato. Plant and Cell Physiology, 58(10), 1661-1672. doi:10.1093/pcp/pcx102 | es_ES |
dc.description.references | Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865 | es_ES |
dc.description.references | Gomez, M. D., Barro-Trastoy, D., Fuster-Almunia, C., Tornero, P., Alonso, J. M., & Perez-Amador, M. A. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 71(22), 7059-7072. doi:10.1093/jxb/eraa395 | es_ES |
dc.description.references | Gómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014 | es_ES |
dc.description.references | Gomez, M. D., Urbez, C., Perez-Amador, M. A., & Carbonell, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE, 6(4), e18760. doi:10.1371/journal.pone.0018760 | es_ES |
dc.description.references | Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231 | es_ES |
dc.description.references | Gonçalves, B., Hasson, A., Belcram, K., Cortizo, M., Morin, H., Nikovics, K., … Arnaud, N. (2015). A conserved role forCUP-SHAPED COTYLEDONgenes during ovule development. The Plant Journal, 83(4), 732-742. doi:10.1111/tpj.12923 | es_ES |
dc.description.references | Grobeta-Hardt, R. (2002). WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & Development, 16(9), 1129-1138. doi:10.1101/gad.225202 | es_ES |
dc.description.references | Hashimoto, K., Miyashima, S., Sato-Nara, K., Yamada, T., & Nakajima, K. (2018). Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 59(5), 1017-1026. doi:10.1093/pcp/pcy042 | es_ES |
dc.description.references | Hauser, B. A., He, J. Q., Park, S. O., & Gasser, C. S. (2000). TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development, 127(10), 2219-2226. doi:10.1242/dev.127.10.2219 | es_ES |
dc.description.references | Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1 | es_ES |
dc.description.references | Heisler, M. G., & Byrne, M. E. (2020). Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 53, 73-79. doi:10.1016/j.pbi.2019.10.007 | es_ES |
dc.description.references | Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., & Meyerowitz, E. M. (2005). Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 15(21), 1899-1911. doi:10.1016/j.cub.2005.09.052 | es_ES |
dc.description.references | Hibara, K., Takada, S., & Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal, 36(5), 687-696. doi:10.1046/j.1365-313x.2003.01911.x | es_ES |
dc.description.references | Hill, T. A., Broadhvest, J., Kuzoff, R. K., & Gasser, C. S. (2006). Arabidopsis SHORT INTEGUMENTS 2 Is a Mitochondrial DAR GTPase. Genetics, 174(2), 707-718. doi:10.1534/genetics.106.060657 | es_ES |
dc.description.references | Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070 | es_ES |
dc.description.references | Hwang, I., Sheen, J., & Müller, B. (2012). Cytokinin Signaling Networks. Annual Review of Plant Biology, 63(1), 353-380. doi:10.1146/annurev-arplant-042811-105503 | es_ES |
dc.description.references | Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60 | es_ES |
dc.description.references | Jia, D., Chen, L., Yin, G., Yang, X., Gao, Z., Guo, Y., … Tang, W. (2020). Brassinosteroids regulate outer ovule integument growth in part via the control ofINNER NO OUTERby BRASSINOZOLE‐RESISTANT family transcription factors. Journal of Integrative Plant Biology, 62(8), 1093-1111. doi:10.1111/jipb.12915 | es_ES |
dc.description.references | Jung, J.-H., & Park, C.-M. (2006). MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 225(6), 1327-1338. doi:10.1007/s00425-006-0439-1 | es_ES |
dc.description.references | Kelley, D. R., Arreola, A., Gallagher, T. L., & Gasser, C. S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development, 139(6), 1105-1109. doi:10.1242/dev.067918 | es_ES |
dc.description.references | Kelley, D. R., Skinner, D. J., & Gasser, C. S. (2009). Roles of polarity determinants in ovule development. The Plant Journal, 57(6), 1054-1064. doi:10.1111/j.1365-313x.2008.03752.x | es_ES |
dc.description.references | Khan, S. U., Yangmiao, J., Liu, S., Zhang, K., Khan, M. H. U., Zhai, Y., … Zhou, Y. (2019). Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Industrial Crops and Products, 142, 111877. doi:10.1016/j.indcrop.2019.111877 | es_ES |
dc.description.references | Klucher, K. M., Chow, H., Reiser, L., & Fischer, R. L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 8(2), 137-153. doi:10.1105/tpc.8.2.137 | es_ES |
dc.description.references | Krizek, B. A. (1999). Ectopic expression ofAINTEGUMENTA inArabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25(3), 224-236. doi:10.1002/(sici)1520-6408(1999)25:3<224::aid-dvg5>3.0.co;2-y | es_ES |
dc.description.references | Krizek, B. A., Blakley, I. C., Ho, Y., Freese, N., & Loraine, A. E. (2020). The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. The Plant Journal, 103(2), 752-768. doi:10.1111/tpj.14769 | es_ES |
dc.description.references | Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951 | es_ES |
dc.description.references | Larsson, E., Vivian-Smith, A., Offringa, R., & Sundberg, E. (2017). Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01735 | es_ES |
dc.description.references | Laufs, P., Peaucelle, A., Morin, H., & Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17), 4311-4322. doi:10.1242/dev.01320 | es_ES |
dc.description.references | Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971 | es_ES |
dc.description.references | Leyser, O. (2017). Auxin Signaling. Plant Physiology, 176(1), 465-479. doi:10.1104/pp.17.00765 | es_ES |
dc.description.references | Li, L., Qin, G., Tsuge, T., Hou, X., Ding, M., Aoyama, T., … Qu, L. (2008). SPOROCYTELESSmodulatesYUCCAexpression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 179(3), 751-764. doi:10.1111/j.1469-8137.2008.02514.x | es_ES |
dc.description.references | Liao, S., Wang, L., Li, J., & Ruan, Y.-L. (2020). Cell Wall Invertase Is Essential for Ovule Development through Sugar Signaling Rather Than Provision of Carbon Nutrients. Plant Physiology, 183(3), 1126-1144. doi:10.1104/pp.20.00400 | es_ES |
dc.description.references | Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015 | es_ES |
dc.description.references | Lituiev, D. S., Krohn, N. G., Müller, B., Jackson, D., Hellriegel, B., Dresselhaus, T., & Grossniklaus, U. (2013). Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development, 140(22), 4544-4553. doi:10.1242/dev.098301 | es_ES |
dc.description.references | Liu, H.-H., Xiong, F., Duan, C.-Y., Wu, Y.-N., Zhang, Y., & Li, S. (2019). Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. Plant Physiology, 179(3), 1080-1092. doi:10.1104/pp.18.01135 | es_ES |
dc.description.references | Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879 | es_ES |
dc.description.references | Lora, J., Yang, X., & Tucker, M. R. (2019). Establishing a framework for female germline initiation in the plant ovule. Journal of Experimental Botany, 70(11), 2937-2949. doi:10.1093/jxb/erz212 | es_ES |
dc.description.references | Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs. Current Biology, 14(12), 1035-1046. doi:10.1016/j.cub.2004.06.022 | es_ES |
dc.description.references | La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723 | es_ES |
dc.description.references | Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006 | es_ES |
dc.description.references | Matilla, A. J. (2019). Seed coat formation: its evolution and regulation. Seed Science Research, 29(4), 215-226. doi:10.1017/s0960258519000254 | es_ES |
dc.description.references | McAbee, J. M., Hill, T. A., Skinner, D. J., Izhaki, A., Hauser, B. A., Meister, R. J., … Gasser, C. S. (2006). ABERRANT TESTA SHAPEencodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal, 46(3), 522-531. doi:10.1111/j.1365-313x.2006.02717.x | es_ES |
dc.description.references | Meister, R. J., Kotow, L. M., and Gasser, C. S. 2002. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development 129:4281–4289. | es_ES |
dc.description.references | Mendham, N. J., Shipway, P. A., & Scott, R. K. (1981). The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). The Journal of Agricultural Science, 96(2), 389-416. doi:10.1017/s002185960006617x | es_ES |
dc.description.references | Mizukami, Y., & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, 97(2), 942-947. doi:10.1073/pnas.97.2.942 | es_ES |
dc.description.references | Modrusan, Z., Reiser, L., Feldmann, K. A., Fischer, R. L., & Haughn, G. W. (1994). Homeotic Transformation of Ovules into Carpel-Like Structures in Arabidopsis. The Plant Cell, 6(3), 333. doi:10.2307/3869754 | es_ES |
dc.description.references | Nemhauser, J. L., Feldman, L. J., & Zambryski, P. C. (2000). Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127(18), 3877-3888. doi:10.1242/dev.127.18.3877 | es_ES |
dc.description.references | Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., & Laufs, P. (2006). The Balance between theMIR164AandCUC2Genes Controls Leaf Margin Serration inArabidopsis. The Plant Cell, 18(11), 2929-2945. doi:10.1105/tpc.106.045617 | es_ES |
dc.description.references | Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., & Ueguchi, C. (2004). Histidine Kinase Homologs That Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of Shoot and Root Growth in Arabidopsis. The Plant Cell, 16(6), 1365-1377. doi:10.1105/tpc.021477 | es_ES |
dc.description.references | Nole-Wilson, S., & Krizek, B. A. (2006). AINTEGUMENTA Contributes to Organ Polarity and Regulates Growth of Lateral Organs in Combination with YABBY Genes. Plant Physiology, 141(3), 977-987. doi:10.1104/pp.106.076604 | es_ES |
dc.description.references | Nole-Wilson, S., Azhakanandam, S., & Franks, R. G. (2010). Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology, 346(2), 181-195. doi:10.1016/j.ydbio.2010.07.016 | es_ES |
dc.description.references | Nole-Wilson, S., Rueschhoff, E. E., Bhatti, H., & Franks, R. G. (2010). Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biology, 10(1). doi:10.1186/1471-2229-10-198 | es_ES |
dc.description.references | Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The Last Reaction Producing Brassinolide Is Catalyzed by Cytochrome P-450s, CYP85A3 in Tomato and CYP85A2 in Arabidopsis. Journal of Biological Chemistry, 280(18), 17873-17879. doi:10.1074/jbc.m414592200 | es_ES |
dc.description.references | Okada, K., Ueda, J., Komaki, M. K., Bell, C. J., & Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. The Plant Cell, 3(7), 677. doi:10.2307/3869249 | es_ES |
dc.description.references | Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin Control of Root Development. Cold Spring Harbor Perspectives in Biology, 2(6), a001537-a001537. doi:10.1101/cshperspect.a001537 | es_ES |
dc.description.references | Pajoro, A., Biewers, S., Dougali, E., Leal Valentim, F., Mendes, M. A., Porri, A., … Angenent, G. C. (2014). The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. Journal of Experimental Botany, 65(17), 4731-4745. doi:10.1093/jxb/eru233 | es_ES |
dc.description.references | Park, S. O., Zheng, Z., Oppenheimer, D. G., & Hauser, B. A. (2005). ThePRETTY FEW SEEDS2gene encodes anArabidopsishomeodomain protein that regulates ovule development. Development, 132(4), 841-849. doi:10.1242/dev.01654 | es_ES |
dc.description.references | Pattison, R. J., & Catalá, C. (2012). Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal, 70(4), 585-598. doi:10.1111/j.1365-313x.2011.04895.x | es_ES |
dc.description.references | Pérez-España, V. H., Sánchez-León, N., & Vielle-Calzada, J.-P. (2011). CYP85A1is required for the initiation of female gametogenesis inArabidopsis thaliana. Plant Signaling & Behavior, 6(3), 321-326. doi:10.4161/psb.6.3.13206 | es_ES |
dc.description.references | Phillips, A. R., & Evans, M. M. S. (2020). Maternal regulation of seed growth and patterning in flowering plants. Maternal Effect Genes in Development, 257-282. doi:10.1016/bs.ctdb.2019.10.008 | es_ES |
dc.description.references | Pillitteri, L. J., Bemis, S. M., Shpak, E. D., & Torii, K. U. (2007). Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development, 134(17), 3099-3109. doi:10.1242/dev.004788 | es_ES |
dc.description.references | Pinto, S. C., Mendes, M. A., Coimbra, S., & Tucker, M. R. (2019). Revisiting the Female Germline and Its Expanding Toolbox. Trends in Plant Science, 24(5), 455-467. doi:10.1016/j.tplants.2019.02.003 | es_ES |
dc.description.references | Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741 | es_ES |
dc.description.references | Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5). doi:10.1242/dev.151894 | es_ES |
dc.description.references | Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8 | es_ES |
dc.description.references | Reyes-Olalde, J. I., & de Folter, S. (2019). Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reproduction, 32(2), 123-136. doi:10.1007/s00497-018-00359-0 | es_ES |
dc.description.references | Reyes-Olalde, J. I., Zúñiga-Mayo, V. M., Serwatowska, J., Chavez Montes, R. A., Lozano-Sotomayor, P., Herrera-Ubaldo, H., … de Folter, S. (2017). The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLOS Genetics, 13(4), e1006726. doi:10.1371/journal.pgen.1006726 | es_ES |
dc.description.references | Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of Plant MicroRNA Targets. Cell, 110(4), 513-520. doi:10.1016/s0092-8674(02)00863-2 | es_ES |
dc.description.references | Rizza, A., & Jones, A. M. (2019). The makings of a gradient: spatiotemporal distribution of gibberellins in plant development. Current Opinion in Plant Biology, 47, 9-15. doi:10.1016/j.pbi.2018.08.001 | es_ES |
dc.description.references | Robinson-Beers, K., Pruitt, R. E., & Gasser, C. S. (1992). Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. The Plant Cell, 4(10), 1237. doi:10.2307/3869410 | es_ES |
dc.description.references | Rodríguez-Cazorla, E., Ortuño-Miquel, S., Candela, H., Bailey-Steinitz, L. J., Yanofsky, M. F., Martínez-Laborda, A., … Vera, A. (2018). Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLOS Genetics, 14(1), e1007182. doi:10.1371/journal.pgen.1007182 | es_ES |
dc.description.references | Rodríguez‐Cazorla, E., Ripoll, J., Ortuño‐Miquel, S., Martínez‐Laborda, A., & Vera, A. (2020). Dissection of the Arabidopsis HUA‐PEP gene activity reveals that ovule fate specification requires restriction of the floral A‐function. New Phytologist, 227(4), 1222-1234. doi:10.1111/nph.16589 | es_ES |
dc.description.references | Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., … Schönenberger, J. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications, 8(1). doi:10.1038/ncomms16047 | es_ES |
dc.description.references | Schauer, S. E., Jacobsen, S. E., Meinke, D. W., & Ray, A. (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends in Plant Science, 7(11), 487-491. doi:10.1016/s1360-1385(02)02355-5 | es_ES |
dc.description.references | Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664 | es_ES |
dc.description.references | Schneitz, K., Baker, S. C., Gasser, C. S., & Redweik, A. (1998). Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 125(14), 2555-2563. doi:10.1242/dev.125.14.2555 | es_ES |
dc.description.references | Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.x | es_ES |
dc.description.references | Schneitz, K., Hulskamp, M., Kopczak, S. D., & Pruitt, R. E. (1997). Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development, 124(7), 1367-1376. doi:10.1242/dev.124.7.1367 | es_ES |
dc.description.references | Schubert, R., Dobritzsch, S., Gruber, C., Hause, G., Athmer, B., Schreiber, T., … Hause, B. (2019). Tomato MYB21 Acts in Ovules to Mediate Jasmonate-Regulated Fertility. The Plant Cell, 31(5), 1043-1062. doi:10.1105/tpc.18.00978 | es_ES |
dc.description.references | Shi, J., Zhan, J., Yang, Y., Ye, J., Huang, S., Li, R., … Wang, H. (2015). Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Scientific Reports, 5(1). doi:10.1038/srep14481 | es_ES |
dc.description.references | Shirley, N. J., Aubert, M. K., Wilkinson, L. G., Bird, D. C., Lora, J., Yang, X., & Tucker, M. R. (2019). Translating auxin responses into ovules, seeds and yield: Insight from Arabidopsis and the cereals. Journal of Integrative Plant Biology, 61(3), 310-336. doi:10.1111/jipb.12747 | es_ES |
dc.description.references | Sieber, P., Gheyselinck, J., Gross-Hardt, R., Laux, T., Grossniklaus, U., & Schneitz, K. (2004). Pattern formation during early ovule development in Arabidopsis thaliana. Developmental Biology, 273(2), 321-334. doi:10.1016/j.ydbio.2004.05.037 | es_ES |
dc.description.references | Šimášková, M., O’Brien, J. A., Khan, M., Van Noorden, G., Ötvös, K., Vieten, A., … Benková, E. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 6(1). doi:10.1038/ncomms9717 | es_ES |
dc.description.references | Simon, M. K., Skinner, D. J., Gallagher, T. L., & Gasser, C. S. (2017). Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics, 207(4), 1489-1500. doi:10.1534/genetics.117.300140 | es_ES |
dc.description.references | Simonini, S., & Østergaard, L. (2019). Female reproductive organ formation: A multitasking endeavor. Plant Development and Evolution, 337-371. doi:10.1016/bs.ctdb.2018.10.004 | es_ES |
dc.description.references | Smaczniak, C., Immink, R. G. H., Angenent, G. C., & Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 139(17), 3081-3098. doi:10.1242/dev.074674 | es_ES |
dc.description.references | Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2(8), 755-767. doi:10.1105/tpc.2.8.755 | es_ES |
dc.description.references | Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.x | es_ES |
dc.description.references | Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036 | es_ES |
dc.description.references | Tanaka, H., Watanabe, M., Sasabe, M., Hiroe, T., Tanaka, T., Tsukaya, H., … Machida, Y. (2007). Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis inArabidopsis. Development, 134(9), 1643-1652. doi:10.1242/dev.003533 | es_ES |
dc.description.references | Thomson, B., & Wellmer, F. (2019). Molecular regulation of flower development. Plant Development and Evolution, 185-210. doi:10.1016/bs.ctdb.2018.11.007 | es_ES |
dc.description.references | Truernit, E., & Haseloff, J. (2008). Arabidopsis thaliana outer ovule integument morphogenesis: Ectopic expression of KNAT1 reveals a compensation mechanism. BMC Plant Biology, 8(1), 35. doi:10.1186/1471-2229-8-35 | es_ES |
dc.description.references | Van der Knaap, E., Chakrabarti, M., Chu, Y. H., Clevenger, J. P., Illa-Berenguer, E., Huang, Z., … Wu, S. (2014). What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00227 | es_ES |
dc.description.references | Villanueva, J. M., Broadhvest, J., Hauser, B. A., Meister, R. J., Schneitz, K., & Gasser, C. S. (1999). INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes & Development, 13(23), 3160-3169. doi:10.1101/gad.13.23.3160 | es_ES |
dc.description.references | Vroemen, C. W., Mordhorst, A. P., Albrecht, C., Kwaaitaal, M. A. C. J., & de Vries, S. C. (2003). The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis. The Plant Cell, 15(7), 1563-1577. doi:10.1105/tpc.012203 | es_ES |
dc.description.references | Wang, H., Liu, Y., Bruffett, K., Lee, J., Hause, G., Walker, J. C., & Zhang, S. (2008). Haplo-Insufficiency ofMPK3inMPK6Mutant Background Uncovers a Novel Function of These Two MAPKs inArabidopsisOvule Development. The Plant Cell, 20(3), 602-613. doi:10.1105/tpc.108.058032 | es_ES |
dc.description.references | Wang, Y., & Jiao, Y. (2017). Auxin and above-ground meristems. Journal of Experimental Botany, 69(2), 147-154. doi:10.1093/jxb/erx299 | es_ES |
dc.description.references | Wei, S.-J., Chai, S., Zhu, R.-M., Duan, C.-Y., Zhang, Y., & Li, S. (2020). HUA ENHANCER1 Mediates Ovule Development. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00397 | es_ES |
dc.description.references | Weijers, D., Nemhauser, J., & Yang, Z. (2018). Auxin: small molecule, big impact. Journal of Experimental Botany, 69(2), 133-136. doi:10.1093/jxb/erx463 | es_ES |
dc.description.references | Wynn, A. N., Seaman, A. A., Jones, A. L., & Franks, R. G. (2014). Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00130 | es_ES |
dc.description.references | Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1). doi:10.1186/1471-2229-9-49 | es_ES |
dc.description.references | Yamada, T., Sasaki, Y., Hashimoto, K., Nakajima, K., & Gasser, C. S. (2015). CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL 1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules. Development. doi:10.1242/dev.129833 | es_ES |
dc.description.references | Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., … Wagner, D. (2013). A Molecular Framework for Auxin-Mediated Initiation of Flower Primordia. Developmental Cell, 24(3), 271-282. doi:10.1016/j.devcel.2012.12.017 | es_ES |
dc.description.references | Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108 | es_ES |
dc.description.references | Yuan, J., & Kessler, S. A. (2019). A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana. PLOS Genetics, 15(2), e1007934. doi:10.1371/journal.pgen.1007934 | es_ES |
dc.description.references | Žádníková, P., & Simon, R. (2014). How boundaries control plant development. Current Opinion in Plant Biology, 17, 116-125. doi:10.1016/j.pbi.2013.11.013 | es_ES |
dc.description.references | Zhou, J.-J., & Luo, J. (2018). The PIN-FORMED Auxin Efflux Carriers in Plants. International Journal of Molecular Sciences, 19(9), 2759. doi:10.3390/ijms19092759 | es_ES |
dc.description.references | Zuñiga-Mayo, V. M., Baños-Bayardo, C. R., Díaz-Ramírez, D., Marsch-Martínez, N., & de Folter, S. (2018). Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Scientific Reports, 8(1). doi:10.1038/s41598-018-25017-3 | es_ES |
dc.description.references | Zúñiga-Mayo, V. M., Gómez-Felipe, A., Herrera-Ubaldo, H., & de Folter, S. (2019). Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany, 70(5), 1447-1460. doi:10.1093/jxb/erz026 | es_ES |