- -

Titanosilicate zeolite precursors for highly efficient oxidation reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Titanosilicate zeolite precursors for highly efficient oxidation reactions

Mostrar el registro completo del ítem

Bai, R.; Navarro Villalba, MT.; Song, Y.; Zhang, T.; Zou, Y.; Feng, Z.; Zhang, P.... (2020). Titanosilicate zeolite precursors for highly efficient oxidation reactions. Chemical Science. 11(45):12341-12349. https://doi.org/10.1039/d0sc04603e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166540

Ficheros en el ítem

Metadatos del ítem

Título: Titanosilicate zeolite precursors for highly efficient oxidation reactions
Autor: Bai, Risheng Navarro Villalba, Mª Teresa Song, Yue Zhang, Tianjun Zou, Yongcun Feng, Zhaochi Zhang, Peng Corma Canós, Avelino Yu, Jihong
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Titanosilicate zeolites are catalysts of interest in the field of fine chemicals. However, the generation and accessibility of active sites in titanosilicate materials for catalyzing reactions with large molecules is ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/d0sc04603e
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0sc04603e
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
...[+]
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/DOE//DEAC02-06CH11357/
info:eu-repo/grantAgreement/NKRDPC//2016YFB0701100/
info:eu-repo/grantAgreement/NSFC//21621001/
info:eu-repo/grantAgreement/MOE//B17020/
info:eu-repo/grantAgreement/NSFC//21920102005/
info:eu-repo/grantAgreement/NSFC//21835002/
[-]
Agradecimientos:
The authors thank the National Key Research and Development Program of China (Grant 2016YFB0701100), the National Natural Science Foundation of China (Grant 21621001, 21920102005 and 21835002), the 111 Project (B17020), ...[+]
Tipo: Artículo

References

Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n [+]
Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Clerici, M. G. (2000). Topics in Catalysis, 13(4), 373-386. doi:10.1023/a:1009063106954

Bellussi, G., Millini, R., Pollesel, P., & Perego, C. (2016). Zeolite science and technology at Eni. New Journal of Chemistry, 40(5), 4061-4077. doi:10.1039/c5nj03498a

Smit, B., & Maesen, T. L. M. (2008). Towards a molecular understanding of shape selectivity. Nature, 451(7179), 671-678. doi:10.1038/nature06552

Jae, J., Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279(2), 257-268. doi:10.1016/j.jcat.2011.01.019

Groen, J. C., Zhu, W., Brouwer, S., Huynink, S. J., Kapteijn, F., Moulijn, J. A., & Pérez-Ramírez, J. (2006). Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. Journal of the American Chemical Society, 129(2), 355-360. doi:10.1021/ja065737o

Bai, R., Sun, Q., Wang, N., Zou, Y., Guo, G., Iborra, S., … Yu, J. (2016). Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 28(18), 6455-6458. doi:10.1021/acs.chemmater.6b03179

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

Tosheva, L., & Valtchev, V. P. (2005). Nanozeolites:  Synthesis, Crystallization Mechanism, and Applications. Chemistry of Materials, 17(10), 2494-2513. doi:10.1021/cm047908z

Awala, H., Gilson, J.-P., Retoux, R., Boullay, P., Goupil, J.-M., Valtchev, V., & Mintova, S. (2015). Template-free nanosized faujasite-type zeolites. Nature Materials, 14(4), 447-451. doi:10.1038/nmat4173

Bai, R., Song, Y., Li, Y., & Yu, J. (2019). Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 1(6), 601-611. doi:10.1016/j.trechm.2019.05.010

Li, K., Valla, J., & Garcia-Martinez, J. (2013). Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem, 6(1), 46-66. doi:10.1002/cctc.201300345

Schneider, D., Mehlhorn, D., Zeigermann, P., Kärger, J., & Valiullin, R. (2016). Transport properties of hierarchical micro–mesoporous materials. Chemical Society Reviews, 45(12), 3439-3467. doi:10.1039/c5cs00715a

Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016

Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., … Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351(6278), 1188-1191. doi:10.1126/science.aaf1559

Chawla, A., Linares, N., Li, R., García-Martínez, J., & Rimer, J. D. (2020). Tracking Zeolite Crystallization by Elemental Mapping. Chemistry of Materials, 32(7), 3278-3287. doi:10.1021/acs.chemmater.0c00572

Corma, A., & Díaz-Cabañas, M. J. (2006). Amorphous microporous molecular sieves with different pore dimensions and topologies: Synthesis, characterization and catalytic activity. Microporous and Mesoporous Materials, 89(1-3), 39-46. doi:10.1016/j.micromeso.2005.09.028

Li, R., Chawla, A., Linares, N., Sutjianto, J. G., Chapman, K. W., Martínez, J. G., & Rimer, J. D. (2018). Diverse Physical States of Amorphous Precursors in Zeolite Synthesis. Industrial & Engineering Chemistry Research, 57(25), 8460-8471. doi:10.1021/acs.iecr.8b01695

Haw, K.-G., Gilson, J.-P., Nesterenko, N., Akouche, M., El Siblani, H., Goupil, J.-M., … Valtchev, V. (2018). Supported Embryonic Zeolites and their Use to Process Bulky Molecules. ACS Catalysis, 8(9), 8199-8212. doi:10.1021/acscatal.8b01936

Akouche, M., Gilson, J.-P., Nesterenko, N., Moldovan, S., Chateigner, D., Siblani, H. E., … Valtchev, V. (2020). Synthesis of Embryonic Zeolites with Controlled Physicochemical Properties. Chemistry of Materials, 32(5), 2123-2132. doi:10.1021/acs.chemmater.9b05258

Inagaki, S., Thomas, K., Ruaux, V., Clet, G., Wakihara, T., Shinoda, S., … Valtchev, V. (2014). Crystal Growth Kinetics as a Tool for Controlling the Catalytic Performance of a FAU-Type Basic Catalyst. ACS Catalysis, 4(7), 2333-2341. doi:10.1021/cs500153e

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

Grand, J., Talapaneni, S. N., Vicente, A., Fernandez, C., Dib, E., Aleksandrov, H. A., … Mintova, S. (2017). One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 16(10), 1010-1015. doi:10.1038/nmat4941

Dubray, F., Moldovan, S., Kouvatas, C., Grand, J., Aquino, C., Barrier, N., … Mintova, S. (2019). Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 141(22), 8689-8693. doi:10.1021/jacs.9b02589

Carati, A., Flego, C., Berti, D., Millini, R., Stocchi, B., & Perego, C. (1999). Influence of synthesis media on the TS-1 Characteristics. Porous materials in environmentally friendly pocesses, Proceedings of the 1st international FEZA conference, 45-52. doi:10.1016/s0167-2991(99)80195-5

Perego, C., Carati, A., Ingallina, P., Mantegazza, M. A., & Bellussi, G. (2001). Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A: General, 221(1-2), 63-72. doi:10.1016/s0926-860x(01)00797-9

Parker, W. O., & Millini, R. (2006). Ti Coordination in Titanium Silicalite-1. Journal of the American Chemical Society, 128(5), 1450-1451. doi:10.1021/ja0576785

Grosso-Giordano, N. A., Hoffman, A. S., Boubnov, A., Small, D. W., Bare, S. R., Zones, S. I., & Katz, A. (2019). Dynamic Reorganization and Confinement of TiIV Active Sites Controls Olefin Epoxidation Catalysis on Two-Dimensional Zeotypes. Journal of the American Chemical Society, 141(17), 7090-7106. doi:10.1021/jacs.9b02160

Bai, R., Sun, Q., Song, Y., Wang, N., Zhang, T., Wang, F., … Yu, J. (2018). Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites. Journal of Materials Chemistry A, 6(18), 8757-8762. doi:10.1039/c8ta01960f

Martens, J. A., Buskens, P., Jacobs, P. A., van der Pol, A., van Hooff, J. H. C., Ferrini, C., … van Bekkum, H. (1993). Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst. Applied Catalysis A: General, 99(1), 71-84. doi:10.1016/0926-860x(93)85040-v

ZHANG, X., WANG, Y., & XIN, F. (2006). Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation. Applied Catalysis A: General, 307(2), 222-230. doi:10.1016/j.apcata.2006.03.050

Fan, W., Duan, R.-G., Yokoi, T., Wu, P., Kubota, Y., & Tatsumi, T. (2008). Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. Journal of the American Chemical Society, 130(31), 10150-10164. doi:10.1021/ja7100399

Xu, L., Huang, D.-D., Li, C.-G., Ji, X., Jin, S., Feng, Z., … Wu, P. (2015). Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chemical Communications, 51(43), 9010-9013. doi:10.1039/c5cc02321a

Bordiga, S., Bonino, F., Damin, A., & Lamberti, C. (2007). Reactivity of Ti(iv) species hosted in TS-1 towards H2O2–H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Physical Chemistry Chemical Physics, 9(35), 4854. doi:10.1039/b706637f

Gleeson, D., Sankar, G., Richard A. Catlow, C., Meurig Thomas, J., Spanó, G., Bordiga, S., … Lamberti, C. (2000). The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Physical Chemistry Chemical Physics, 2(20), 4812-4817. doi:10.1039/b005780k

Guo, Q., Sun, K., Feng, Z., Li, G., Guo, M., Fan, F., & Li, C. (2012). A Thorough Investigation of the Active Titanium Species in TS-1 Zeolite by In Situ UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 18(43), 13854-13860. doi:10.1002/chem.201201319

Xu, W., Zhang, T., Bai, R., Zhang, P., & Yu, J. (2020). A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species. Journal of Materials Chemistry A, 8(19), 9677-9683. doi:10.1039/c9ta13851j

Moteki, T., & Okubo, T. (2013). From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 25(13), 2603-2609. doi:10.1021/cm400727r

Zhu, D., Wang, L., Fan, D., Yan, N., Huang, S., Xu, S., … Liu, Z. (2020). A Bottom‐Up Strategy for the Synthesis of Highly Siliceous Faujasite‐Type Zeolite. Advanced Materials, 32(26), 2000272. doi:10.1002/adma.202000272

Pichat, P., Franco-Parra, C., & Barthomeuf, D. (1975). Infra-red structural study of various type L zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71(0), 991. doi:10.1039/f19757100991

Wang, X., Li, G., Wang, W., Jin, C., & Chen, Y. (2011). Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 142(2-3), 494-502. doi:10.1016/j.micromeso.2010.12.035

Liu, M., Chang, Z., Wei, H., Li, B., Wang, X., & Wen, Y. (2016). Low-cost synthesis of size-controlled TS-1 by using suspended seeds: From screening to scale-up. Applied Catalysis A: General, 525, 59-67. doi:10.1016/j.apcata.2016.07.006

Kumar, P., Gupta, J. K., Muralidhar, G., & Rao, T. S. R. P. (1998). Acidity studies on titanium silicalites-1 (TS-1) by ammonia adsorption using microcalorimetry. Studies in Surface Science and Catalysis, 463-472. doi:10.1016/s0167-2991(98)80320-0

Ikuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., … Okubo, T. (2015). Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process. Journal of the American Chemical Society, 137(45), 14533-14544. doi:10.1021/jacs.5b11046

Zecchina, A., Bordiga, S., Lamberti, C., Ricchiardi, G., Lamberti, C., Ricchiardi, G., … Mantegazza, M. (1996). Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catalysis Today, 32(1-4), 97-106. doi:10.1016/s0920-5861(96)00075-2

Li, C., Xiong, G., Xin, Q., Liu, J., Ying, P., Feng, Z., … Min, E. (1999). UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. Angewandte Chemie International Edition, 38(15), 2220-2222. doi:10.1002/(sici)1521-3773(19990802)38:15<2220::aid-anie2220>3.0.co;2-g

Li, C., Xiong, G., Liu, J., Ying, P., Xin, Q., & Feng, Z. (2001). Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry B, 105(15), 2993-2997. doi:10.1021/jp0042359

Zhang, T., Zuo, Y., Liu, M., Song, C., & Guo, X. (2016). Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega, 1(5), 1034-1040. doi:10.1021/acsomega.6b00266

Nguyen, H. K. D., Sankar, G., & Catlow, R. A. (2016). Reactivities study of titanium sites in titanosilicate frameworks by in situ XANES. Journal of Porous Materials, 24(2), 421-428. doi:10.1007/s10934-016-0275-z

Anderson, R., Mountjoy, G., Smith, M. ., & Newport, R. . (1998). An EXAFS study of silica–titania sol–gels. Journal of Non-Crystalline Solids, 232-234, 72-79. doi:10.1016/s0022-3093(98)00373-1

Tsuruta, Y., Satoh, T., Yoshida, T., Okumura, O., & Ueda, S. (1986). Studies on the Initial Product in the Synthesis of Zeolite A from Concentrated Solutions. New Developments in Zeolite Science and Technology, Proceedings of the 7th International Zeolite Conference, 1001-1007. doi:10.1016/s0167-2991(09)60975-7

Walton, R. I., & O’Hare, D. (2001). An X-ray absorption fine structure study of amorphous precursors of a gallium silicate zeolite. Journal of Physics and Chemistry of Solids, 62(8), 1469-1479. doi:10.1016/s0022-3697(01)00063-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem