Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006
Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n
[+]
Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006
Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n
Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121
Clerici, M. G. (2000). Topics in Catalysis, 13(4), 373-386. doi:10.1023/a:1009063106954
Bellussi, G., Millini, R., Pollesel, P., & Perego, C. (2016). Zeolite science and technology at Eni. New Journal of Chemistry, 40(5), 4061-4077. doi:10.1039/c5nj03498a
Smit, B., & Maesen, T. L. M. (2008). Towards a molecular understanding of shape selectivity. Nature, 451(7179), 671-678. doi:10.1038/nature06552
Jae, J., Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279(2), 257-268. doi:10.1016/j.jcat.2011.01.019
Groen, J. C., Zhu, W., Brouwer, S., Huynink, S. J., Kapteijn, F., Moulijn, J. A., & Pérez-Ramírez, J. (2006). Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. Journal of the American Chemical Society, 129(2), 355-360. doi:10.1021/ja065737o
Bai, R., Sun, Q., Wang, N., Zou, Y., Guo, G., Iborra, S., … Yu, J. (2016). Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 28(18), 6455-6458. doi:10.1021/acs.chemmater.6b03179
Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238
Tosheva, L., & Valtchev, V. P. (2005). Nanozeolites: Synthesis, Crystallization Mechanism, and Applications. Chemistry of Materials, 17(10), 2494-2513. doi:10.1021/cm047908z
Awala, H., Gilson, J.-P., Retoux, R., Boullay, P., Goupil, J.-M., Valtchev, V., & Mintova, S. (2015). Template-free nanosized faujasite-type zeolites. Nature Materials, 14(4), 447-451. doi:10.1038/nmat4173
Bai, R., Song, Y., Li, Y., & Yu, J. (2019). Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 1(6), 601-611. doi:10.1016/j.trechm.2019.05.010
Li, K., Valla, J., & Garcia-Martinez, J. (2013). Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem, 6(1), 46-66. doi:10.1002/cctc.201300345
Schneider, D., Mehlhorn, D., Zeigermann, P., Kärger, J., & Valiullin, R. (2016). Transport properties of hierarchical micro–mesoporous materials. Chemical Society Reviews, 45(12), 3439-3467. doi:10.1039/c5cs00715a
Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016
Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., … Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351(6278), 1188-1191. doi:10.1126/science.aaf1559
Chawla, A., Linares, N., Li, R., García-Martínez, J., & Rimer, J. D. (2020). Tracking Zeolite Crystallization by Elemental Mapping. Chemistry of Materials, 32(7), 3278-3287. doi:10.1021/acs.chemmater.0c00572
Corma, A., & Díaz-Cabañas, M. J. (2006). Amorphous microporous molecular sieves with different pore dimensions and topologies: Synthesis, characterization and catalytic activity. Microporous and Mesoporous Materials, 89(1-3), 39-46. doi:10.1016/j.micromeso.2005.09.028
Li, R., Chawla, A., Linares, N., Sutjianto, J. G., Chapman, K. W., Martínez, J. G., & Rimer, J. D. (2018). Diverse Physical States of Amorphous Precursors in Zeolite Synthesis. Industrial & Engineering Chemistry Research, 57(25), 8460-8471. doi:10.1021/acs.iecr.8b01695
Haw, K.-G., Gilson, J.-P., Nesterenko, N., Akouche, M., El Siblani, H., Goupil, J.-M., … Valtchev, V. (2018). Supported Embryonic Zeolites and their Use to Process Bulky Molecules. ACS Catalysis, 8(9), 8199-8212. doi:10.1021/acscatal.8b01936
Akouche, M., Gilson, J.-P., Nesterenko, N., Moldovan, S., Chateigner, D., Siblani, H. E., … Valtchev, V. (2020). Synthesis of Embryonic Zeolites with Controlled Physicochemical Properties. Chemistry of Materials, 32(5), 2123-2132. doi:10.1021/acs.chemmater.9b05258
Inagaki, S., Thomas, K., Ruaux, V., Clet, G., Wakihara, T., Shinoda, S., … Valtchev, V. (2014). Crystal Growth Kinetics as a Tool for Controlling the Catalytic Performance of a FAU-Type Basic Catalyst. ACS Catalysis, 4(7), 2333-2341. doi:10.1021/cs500153e
Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i
Grand, J., Talapaneni, S. N., Vicente, A., Fernandez, C., Dib, E., Aleksandrov, H. A., … Mintova, S. (2017). One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 16(10), 1010-1015. doi:10.1038/nmat4941
Dubray, F., Moldovan, S., Kouvatas, C., Grand, J., Aquino, C., Barrier, N., … Mintova, S. (2019). Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 141(22), 8689-8693. doi:10.1021/jacs.9b02589
Carati, A., Flego, C., Berti, D., Millini, R., Stocchi, B., & Perego, C. (1999). Influence of synthesis media on the TS-1 Characteristics. Porous materials in environmentally friendly pocesses, Proceedings of the 1st international FEZA conference, 45-52. doi:10.1016/s0167-2991(99)80195-5
Perego, C., Carati, A., Ingallina, P., Mantegazza, M. A., & Bellussi, G. (2001). Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A: General, 221(1-2), 63-72. doi:10.1016/s0926-860x(01)00797-9
Parker, W. O., & Millini, R. (2006). Ti Coordination in Titanium Silicalite-1. Journal of the American Chemical Society, 128(5), 1450-1451. doi:10.1021/ja0576785
Grosso-Giordano, N. A., Hoffman, A. S., Boubnov, A., Small, D. W., Bare, S. R., Zones, S. I., & Katz, A. (2019). Dynamic Reorganization and Confinement of TiIV Active Sites Controls Olefin Epoxidation Catalysis on Two-Dimensional Zeotypes. Journal of the American Chemical Society, 141(17), 7090-7106. doi:10.1021/jacs.9b02160
Bai, R., Sun, Q., Song, Y., Wang, N., Zhang, T., Wang, F., … Yu, J. (2018). Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites. Journal of Materials Chemistry A, 6(18), 8757-8762. doi:10.1039/c8ta01960f
Martens, J. A., Buskens, P., Jacobs, P. A., van der Pol, A., van Hooff, J. H. C., Ferrini, C., … van Bekkum, H. (1993). Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst. Applied Catalysis A: General, 99(1), 71-84. doi:10.1016/0926-860x(93)85040-v
ZHANG, X., WANG, Y., & XIN, F. (2006). Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation. Applied Catalysis A: General, 307(2), 222-230. doi:10.1016/j.apcata.2006.03.050
Fan, W., Duan, R.-G., Yokoi, T., Wu, P., Kubota, Y., & Tatsumi, T. (2008). Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. Journal of the American Chemical Society, 130(31), 10150-10164. doi:10.1021/ja7100399
Xu, L., Huang, D.-D., Li, C.-G., Ji, X., Jin, S., Feng, Z., … Wu, P. (2015). Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chemical Communications, 51(43), 9010-9013. doi:10.1039/c5cc02321a
Bordiga, S., Bonino, F., Damin, A., & Lamberti, C. (2007). Reactivity of Ti(iv) species hosted in TS-1 towards H2O2–H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Physical Chemistry Chemical Physics, 9(35), 4854. doi:10.1039/b706637f
Gleeson, D., Sankar, G., Richard A. Catlow, C., Meurig Thomas, J., Spanó, G., Bordiga, S., … Lamberti, C. (2000). The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Physical Chemistry Chemical Physics, 2(20), 4812-4817. doi:10.1039/b005780k
Guo, Q., Sun, K., Feng, Z., Li, G., Guo, M., Fan, F., & Li, C. (2012). A Thorough Investigation of the Active Titanium Species in TS-1 Zeolite by In Situ UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 18(43), 13854-13860. doi:10.1002/chem.201201319
Xu, W., Zhang, T., Bai, R., Zhang, P., & Yu, J. (2020). A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species. Journal of Materials Chemistry A, 8(19), 9677-9683. doi:10.1039/c9ta13851j
Moteki, T., & Okubo, T. (2013). From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 25(13), 2603-2609. doi:10.1021/cm400727r
Zhu, D., Wang, L., Fan, D., Yan, N., Huang, S., Xu, S., … Liu, Z. (2020). A Bottom‐Up Strategy for the Synthesis of Highly Siliceous Faujasite‐Type Zeolite. Advanced Materials, 32(26), 2000272. doi:10.1002/adma.202000272
Pichat, P., Franco-Parra, C., & Barthomeuf, D. (1975). Infra-red structural study of various type L zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71(0), 991. doi:10.1039/f19757100991
Wang, X., Li, G., Wang, W., Jin, C., & Chen, Y. (2011). Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 142(2-3), 494-502. doi:10.1016/j.micromeso.2010.12.035
Liu, M., Chang, Z., Wei, H., Li, B., Wang, X., & Wen, Y. (2016). Low-cost synthesis of size-controlled TS-1 by using suspended seeds: From screening to scale-up. Applied Catalysis A: General, 525, 59-67. doi:10.1016/j.apcata.2016.07.006
Kumar, P., Gupta, J. K., Muralidhar, G., & Rao, T. S. R. P. (1998). Acidity studies on titanium silicalites-1 (TS-1) by ammonia adsorption using microcalorimetry. Studies in Surface Science and Catalysis, 463-472. doi:10.1016/s0167-2991(98)80320-0
Ikuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., … Okubo, T. (2015). Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process. Journal of the American Chemical Society, 137(45), 14533-14544. doi:10.1021/jacs.5b11046
Zecchina, A., Bordiga, S., Lamberti, C., Ricchiardi, G., Lamberti, C., Ricchiardi, G., … Mantegazza, M. (1996). Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catalysis Today, 32(1-4), 97-106. doi:10.1016/s0920-5861(96)00075-2
Li, C., Xiong, G., Xin, Q., Liu, J., Ying, P., Feng, Z., … Min, E. (1999). UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. Angewandte Chemie International Edition, 38(15), 2220-2222. doi:10.1002/(sici)1521-3773(19990802)38:15<2220::aid-anie2220>3.0.co;2-g
Li, C., Xiong, G., Liu, J., Ying, P., Xin, Q., & Feng, Z. (2001). Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry B, 105(15), 2993-2997. doi:10.1021/jp0042359
Zhang, T., Zuo, Y., Liu, M., Song, C., & Guo, X. (2016). Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega, 1(5), 1034-1040. doi:10.1021/acsomega.6b00266
Nguyen, H. K. D., Sankar, G., & Catlow, R. A. (2016). Reactivities study of titanium sites in titanosilicate frameworks by in situ XANES. Journal of Porous Materials, 24(2), 421-428. doi:10.1007/s10934-016-0275-z
Anderson, R., Mountjoy, G., Smith, M. ., & Newport, R. . (1998). An EXAFS study of silica–titania sol–gels. Journal of Non-Crystalline Solids, 232-234, 72-79. doi:10.1016/s0022-3093(98)00373-1
Tsuruta, Y., Satoh, T., Yoshida, T., Okumura, O., & Ueda, S. (1986). Studies on the Initial Product in the Synthesis of Zeolite A from Concentrated Solutions. New Developments in Zeolite Science and Technology, Proceedings of the 7th International Zeolite Conference, 1001-1007. doi:10.1016/s0167-2991(09)60975-7
Walton, R. I., & O’Hare, D. (2001). An X-ray absorption fine structure study of amorphous precursors of a gallium silicate zeolite. Journal of Physics and Chemistry of Solids, 62(8), 1469-1479. doi:10.1016/s0022-3697(01)00063-4
[-]