- -

Titanosilicate zeolite precursors for highly efficient oxidation reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Titanosilicate zeolite precursors for highly efficient oxidation reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bai, Risheng es_ES
dc.contributor.author Navarro Villalba, Mª Teresa es_ES
dc.contributor.author Song, Yue es_ES
dc.contributor.author Zhang, Tianjun es_ES
dc.contributor.author Zou, Yongcun es_ES
dc.contributor.author Feng, Zhaochi es_ES
dc.contributor.author Zhang, Peng es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Yu, Jihong es_ES
dc.date.accessioned 2021-05-20T03:34:38Z
dc.date.available 2021-05-20T03:34:38Z
dc.date.issued 2020-12-07 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166540
dc.description.abstract [EN] Titanosilicate zeolites are catalysts of interest in the field of fine chemicals. However, the generation and accessibility of active sites in titanosilicate materials for catalyzing reactions with large molecules is still a challenge. Herein, we prepared titanosilicate zeolite precursors with open zeolitic structures, tunable pore sizes, and controllable Si/Ti ratios through a hydrothermal crystallization strategy by using quaternary ammonium templates. A series of quaternary ammonium ions are discovered as effective organic templates. The prepared amorphous titanosilicate zeolites with some zeolite framework structural order have extra-large micropores and abundant octahedrally coordinated isolated Ti species, which lead to a superior catalytic performance in the oxidative desulfurization of dibenzothiophene (DBT) and epoxidation of cyclohexene. It is anticipated that the amorphous prezeolitic titanosilicates will benefit the catalytic conversion of bulky molecules in a wide range of reaction processes. es_ES
dc.description.sponsorship The authors thank the National Key Research and Development Program of China (Grant 2016YFB0701100), the National Natural Science Foundation of China (Grant 21621001, 21920102005 and 21835002), the 111 Project (B17020), the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch), and the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO) for supporting this work. The APS was operated for the U.S. DOE Office of Science by the Argonne National Laboratory, and the CLS@APS facilities (Sector 20) were supported by the U.S. DOE under contract no. DEAC02-06CH11357, and the Canadian Light Source and its funding partners. R. Bai acknowledges the China Scholarship Council for the financial support. Jose Gaona Miguelez is also acknowledged for technical help. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Titanosilicate zeolite precursors for highly efficient oxidation reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0sc04603e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DEAC02-06CH11357/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2016YFB0701100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21621001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MOE//B17020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21920102005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21835002/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Bai, R.; Navarro Villalba, MT.; Song, Y.; Zhang, T.; Zou, Y.; Feng, Z.; Zhang, P.... (2020). Titanosilicate zeolite precursors for highly efficient oxidation reactions. Chemical Science. 11(45):12341-12349. https://doi.org/10.1039/d0sc04603e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0sc04603e es_ES
dc.description.upvformatpinicio 12341 es_ES
dc.description.upvformatpfin 12349 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 45 es_ES
dc.relation.pasarela S\433256 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Canadian Light Source es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Ministry of Education, China es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Clerici, M. G. (2000). Topics in Catalysis, 13(4), 373-386. doi:10.1023/a:1009063106954 es_ES
dc.description.references Bellussi, G., Millini, R., Pollesel, P., & Perego, C. (2016). Zeolite science and technology at Eni. New Journal of Chemistry, 40(5), 4061-4077. doi:10.1039/c5nj03498a es_ES
dc.description.references Smit, B., & Maesen, T. L. M. (2008). Towards a molecular understanding of shape selectivity. Nature, 451(7179), 671-678. doi:10.1038/nature06552 es_ES
dc.description.references Jae, J., Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279(2), 257-268. doi:10.1016/j.jcat.2011.01.019 es_ES
dc.description.references Groen, J. C., Zhu, W., Brouwer, S., Huynink, S. J., Kapteijn, F., Moulijn, J. A., & Pérez-Ramírez, J. (2006). Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. Journal of the American Chemical Society, 129(2), 355-360. doi:10.1021/ja065737o es_ES
dc.description.references Bai, R., Sun, Q., Wang, N., Zou, Y., Guo, G., Iborra, S., … Yu, J. (2016). Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 28(18), 6455-6458. doi:10.1021/acs.chemmater.6b03179 es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references Tosheva, L., & Valtchev, V. P. (2005). Nanozeolites:  Synthesis, Crystallization Mechanism, and Applications. Chemistry of Materials, 17(10), 2494-2513. doi:10.1021/cm047908z es_ES
dc.description.references Awala, H., Gilson, J.-P., Retoux, R., Boullay, P., Goupil, J.-M., Valtchev, V., & Mintova, S. (2015). Template-free nanosized faujasite-type zeolites. Nature Materials, 14(4), 447-451. doi:10.1038/nmat4173 es_ES
dc.description.references Bai, R., Song, Y., Li, Y., & Yu, J. (2019). Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 1(6), 601-611. doi:10.1016/j.trechm.2019.05.010 es_ES
dc.description.references Li, K., Valla, J., & Garcia-Martinez, J. (2013). Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem, 6(1), 46-66. doi:10.1002/cctc.201300345 es_ES
dc.description.references Schneider, D., Mehlhorn, D., Zeigermann, P., Kärger, J., & Valiullin, R. (2016). Transport properties of hierarchical micro–mesoporous materials. Chemical Society Reviews, 45(12), 3439-3467. doi:10.1039/c5cs00715a es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 es_ES
dc.description.references Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J.-H., … Yu, J. (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science, 351(6278), 1188-1191. doi:10.1126/science.aaf1559 es_ES
dc.description.references Chawla, A., Linares, N., Li, R., García-Martínez, J., & Rimer, J. D. (2020). Tracking Zeolite Crystallization by Elemental Mapping. Chemistry of Materials, 32(7), 3278-3287. doi:10.1021/acs.chemmater.0c00572 es_ES
dc.description.references Corma, A., & Díaz-Cabañas, M. J. (2006). Amorphous microporous molecular sieves with different pore dimensions and topologies: Synthesis, characterization and catalytic activity. Microporous and Mesoporous Materials, 89(1-3), 39-46. doi:10.1016/j.micromeso.2005.09.028 es_ES
dc.description.references Li, R., Chawla, A., Linares, N., Sutjianto, J. G., Chapman, K. W., Martínez, J. G., & Rimer, J. D. (2018). Diverse Physical States of Amorphous Precursors in Zeolite Synthesis. Industrial & Engineering Chemistry Research, 57(25), 8460-8471. doi:10.1021/acs.iecr.8b01695 es_ES
dc.description.references Haw, K.-G., Gilson, J.-P., Nesterenko, N., Akouche, M., El Siblani, H., Goupil, J.-M., … Valtchev, V. (2018). Supported Embryonic Zeolites and their Use to Process Bulky Molecules. ACS Catalysis, 8(9), 8199-8212. doi:10.1021/acscatal.8b01936 es_ES
dc.description.references Akouche, M., Gilson, J.-P., Nesterenko, N., Moldovan, S., Chateigner, D., Siblani, H. E., … Valtchev, V. (2020). Synthesis of Embryonic Zeolites with Controlled Physicochemical Properties. Chemistry of Materials, 32(5), 2123-2132. doi:10.1021/acs.chemmater.9b05258 es_ES
dc.description.references Inagaki, S., Thomas, K., Ruaux, V., Clet, G., Wakihara, T., Shinoda, S., … Valtchev, V. (2014). Crystal Growth Kinetics as a Tool for Controlling the Catalytic Performance of a FAU-Type Basic Catalyst. ACS Catalysis, 4(7), 2333-2341. doi:10.1021/cs500153e es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i es_ES
dc.description.references Grand, J., Talapaneni, S. N., Vicente, A., Fernandez, C., Dib, E., Aleksandrov, H. A., … Mintova, S. (2017). One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 16(10), 1010-1015. doi:10.1038/nmat4941 es_ES
dc.description.references Dubray, F., Moldovan, S., Kouvatas, C., Grand, J., Aquino, C., Barrier, N., … Mintova, S. (2019). Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 141(22), 8689-8693. doi:10.1021/jacs.9b02589 es_ES
dc.description.references Carati, A., Flego, C., Berti, D., Millini, R., Stocchi, B., & Perego, C. (1999). Influence of synthesis media on the TS-1 Characteristics. Porous materials in environmentally friendly pocesses, Proceedings of the 1st international FEZA conference, 45-52. doi:10.1016/s0167-2991(99)80195-5 es_ES
dc.description.references Perego, C., Carati, A., Ingallina, P., Mantegazza, M. A., & Bellussi, G. (2001). Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A: General, 221(1-2), 63-72. doi:10.1016/s0926-860x(01)00797-9 es_ES
dc.description.references Parker, W. O., & Millini, R. (2006). Ti Coordination in Titanium Silicalite-1. Journal of the American Chemical Society, 128(5), 1450-1451. doi:10.1021/ja0576785 es_ES
dc.description.references Grosso-Giordano, N. A., Hoffman, A. S., Boubnov, A., Small, D. W., Bare, S. R., Zones, S. I., & Katz, A. (2019). Dynamic Reorganization and Confinement of TiIV Active Sites Controls Olefin Epoxidation Catalysis on Two-Dimensional Zeotypes. Journal of the American Chemical Society, 141(17), 7090-7106. doi:10.1021/jacs.9b02160 es_ES
dc.description.references Bai, R., Sun, Q., Song, Y., Wang, N., Zhang, T., Wang, F., … Yu, J. (2018). Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites. Journal of Materials Chemistry A, 6(18), 8757-8762. doi:10.1039/c8ta01960f es_ES
dc.description.references Martens, J. A., Buskens, P., Jacobs, P. A., van der Pol, A., van Hooff, J. H. C., Ferrini, C., … van Bekkum, H. (1993). Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst. Applied Catalysis A: General, 99(1), 71-84. doi:10.1016/0926-860x(93)85040-v es_ES
dc.description.references ZHANG, X., WANG, Y., & XIN, F. (2006). Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation. Applied Catalysis A: General, 307(2), 222-230. doi:10.1016/j.apcata.2006.03.050 es_ES
dc.description.references Fan, W., Duan, R.-G., Yokoi, T., Wu, P., Kubota, Y., & Tatsumi, T. (2008). Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. Journal of the American Chemical Society, 130(31), 10150-10164. doi:10.1021/ja7100399 es_ES
dc.description.references Xu, L., Huang, D.-D., Li, C.-G., Ji, X., Jin, S., Feng, Z., … Wu, P. (2015). Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chemical Communications, 51(43), 9010-9013. doi:10.1039/c5cc02321a es_ES
dc.description.references Bordiga, S., Bonino, F., Damin, A., & Lamberti, C. (2007). Reactivity of Ti(iv) species hosted in TS-1 towards H2O2–H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Physical Chemistry Chemical Physics, 9(35), 4854. doi:10.1039/b706637f es_ES
dc.description.references Gleeson, D., Sankar, G., Richard A. Catlow, C., Meurig Thomas, J., Spanó, G., Bordiga, S., … Lamberti, C. (2000). The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Physical Chemistry Chemical Physics, 2(20), 4812-4817. doi:10.1039/b005780k es_ES
dc.description.references Guo, Q., Sun, K., Feng, Z., Li, G., Guo, M., Fan, F., & Li, C. (2012). A Thorough Investigation of the Active Titanium Species in TS-1 Zeolite by In Situ UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 18(43), 13854-13860. doi:10.1002/chem.201201319 es_ES
dc.description.references Xu, W., Zhang, T., Bai, R., Zhang, P., & Yu, J. (2020). A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species. Journal of Materials Chemistry A, 8(19), 9677-9683. doi:10.1039/c9ta13851j es_ES
dc.description.references Moteki, T., & Okubo, T. (2013). From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 25(13), 2603-2609. doi:10.1021/cm400727r es_ES
dc.description.references Zhu, D., Wang, L., Fan, D., Yan, N., Huang, S., Xu, S., … Liu, Z. (2020). A Bottom‐Up Strategy for the Synthesis of Highly Siliceous Faujasite‐Type Zeolite. Advanced Materials, 32(26), 2000272. doi:10.1002/adma.202000272 es_ES
dc.description.references Pichat, P., Franco-Parra, C., & Barthomeuf, D. (1975). Infra-red structural study of various type L zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71(0), 991. doi:10.1039/f19757100991 es_ES
dc.description.references Wang, X., Li, G., Wang, W., Jin, C., & Chen, Y. (2011). Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 142(2-3), 494-502. doi:10.1016/j.micromeso.2010.12.035 es_ES
dc.description.references Liu, M., Chang, Z., Wei, H., Li, B., Wang, X., & Wen, Y. (2016). Low-cost synthesis of size-controlled TS-1 by using suspended seeds: From screening to scale-up. Applied Catalysis A: General, 525, 59-67. doi:10.1016/j.apcata.2016.07.006 es_ES
dc.description.references Kumar, P., Gupta, J. K., Muralidhar, G., & Rao, T. S. R. P. (1998). Acidity studies on titanium silicalites-1 (TS-1) by ammonia adsorption using microcalorimetry. Studies in Surface Science and Catalysis, 463-472. doi:10.1016/s0167-2991(98)80320-0 es_ES
dc.description.references Ikuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., … Okubo, T. (2015). Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process. Journal of the American Chemical Society, 137(45), 14533-14544. doi:10.1021/jacs.5b11046 es_ES
dc.description.references Zecchina, A., Bordiga, S., Lamberti, C., Ricchiardi, G., Lamberti, C., Ricchiardi, G., … Mantegazza, M. (1996). Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catalysis Today, 32(1-4), 97-106. doi:10.1016/s0920-5861(96)00075-2 es_ES
dc.description.references Li, C., Xiong, G., Xin, Q., Liu, J., Ying, P., Feng, Z., … Min, E. (1999). UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. Angewandte Chemie International Edition, 38(15), 2220-2222. doi:10.1002/(sici)1521-3773(19990802)38:15<2220::aid-anie2220>3.0.co;2-g es_ES
dc.description.references Li, C., Xiong, G., Liu, J., Ying, P., Xin, Q., & Feng, Z. (2001). Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry B, 105(15), 2993-2997. doi:10.1021/jp0042359 es_ES
dc.description.references Zhang, T., Zuo, Y., Liu, M., Song, C., & Guo, X. (2016). Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega, 1(5), 1034-1040. doi:10.1021/acsomega.6b00266 es_ES
dc.description.references Nguyen, H. K. D., Sankar, G., & Catlow, R. A. (2016). Reactivities study of titanium sites in titanosilicate frameworks by in situ XANES. Journal of Porous Materials, 24(2), 421-428. doi:10.1007/s10934-016-0275-z es_ES
dc.description.references Anderson, R., Mountjoy, G., Smith, M. ., & Newport, R. . (1998). An EXAFS study of silica–titania sol–gels. Journal of Non-Crystalline Solids, 232-234, 72-79. doi:10.1016/s0022-3093(98)00373-1 es_ES
dc.description.references Tsuruta, Y., Satoh, T., Yoshida, T., Okumura, O., & Ueda, S. (1986). Studies on the Initial Product in the Synthesis of Zeolite A from Concentrated Solutions. New Developments in Zeolite Science and Technology, Proceedings of the 7th International Zeolite Conference, 1001-1007. doi:10.1016/s0167-2991(09)60975-7 es_ES
dc.description.references Walton, R. I., & O’Hare, D. (2001). An X-ray absorption fine structure study of amorphous precursors of a gallium silicate zeolite. Journal of Physics and Chemistry of Solids, 62(8), 1469-1479. doi:10.1016/s0022-3697(01)00063-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem