- -

Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015)

Show full item record

Rockenschaub, P.; Nguyen, V.; Aldridge, RW.; Acosta, D.; Garcia-Gomez, JM.; Sáez Silvestre, C. (2020). Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015). BMJ Open. 10(2):1-9. https://doi.org/10.1136/bmjopen-2019-034396

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166542

Files in this item

Item Metadata

Title: Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015)
Author: Rockenschaub, Patrick Nguyen, Vincent Aldridge, Robert W. Acosta, Dionisio Garcia-Gomez, Juan M Sáez Silvestre, Carlos
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Objectives To demonstrate how data-driven variability methods can be used to identify changes in disease recording in two English electronic health records databases between 2001 and 2015. Design Repeated cross-sectional ...[+]
Copyrigths: Reconocimiento (by)
Source:
BMJ Open. (eissn: 2044-6055 )
DOI: 10.1136/bmjopen-2019-034396
Publisher:
BMJ
Publisher version: https://doi.org/10.1136/bmjopen-2019-034396
Project ID:
info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/
AEI/DPI2016-80054-R
...[+]
info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/
info:eu-repo/grantAgreement/UKRI//ES%2FP008321%2F1/GB/Preserving Antibiotics through Safe Stewardship: PASS/
info:eu-repo/grantAgreement/EC/H2020/825750/EU/Patient-centred pathways of early palliative care, supportive ecosystems and appraisal standard/
info:eu-repo/grantAgreement/WT/Population and Public Health/206602/Public health data science to investigate and improve migrant health./
info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE/
AEI/DPI2016-80054-R
[-]
Thanks:
VN is funded by a Public Health England PhD Studentship. RWA is supported by a Wellcome Trust Clinical Research Career Development Fellowship (206602/Z/17/Z). JMGG and CS contributions to this work were partially supported ...[+]
Type: Artículo

References

Hripcsak, G., & Albers, D. J. (2013). Next-generation phenotyping of electronic health records. Journal of the American Medical Informatics Association, 20(1), 117-121. doi:10.1136/amiajnl-2012-001145

Burton, P. R., Murtagh, M. J., Boyd, A., Williams, J. B., Dove, E. S., Wallace, S. E., … Knoppers, B. M. (2015). Data Safe Havens in health research and healthcare. Bioinformatics, 31(20), 3241-3248. doi:10.1093/bioinformatics/btv279

Cruz-Correia R , Rodrigues P , Freitas A . Chapter: 4, Data quality and integration issues in electronic health records. In: Information discovery on electronic health records. CRC Press, 2009: 55–95. [+]
Hripcsak, G., & Albers, D. J. (2013). Next-generation phenotyping of electronic health records. Journal of the American Medical Informatics Association, 20(1), 117-121. doi:10.1136/amiajnl-2012-001145

Burton, P. R., Murtagh, M. J., Boyd, A., Williams, J. B., Dove, E. S., Wallace, S. E., … Knoppers, B. M. (2015). Data Safe Havens in health research and healthcare. Bioinformatics, 31(20), 3241-3248. doi:10.1093/bioinformatics/btv279

Cruz-Correia R , Rodrigues P , Freitas A . Chapter: 4, Data quality and integration issues in electronic health records. In: Information discovery on electronic health records. CRC Press, 2009: 55–95.

Massoudi, B. L., Goodman, K. W., Gotham, I. J., Holmes, J. H., Lang, L., Miner, K., … Fu, P. C. (2012). An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference. Journal of the American Medical Informatics Association, 19(5), 688-695. doi:10.1136/amiajnl-2011-000507

Schlegel, D. R., & Ficheur, G. (2017). Secondary Use of Patient Data: Review of the Literature Published in 2016. Yearbook of Medical Informatics, 26(01), 68-71. doi:10.15265/iy-2017-032

Weiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144-151. doi:10.1136/amiajnl-2011-000681

Herrett, E., Thomas, S. L., Schoonen, W. M., Smeeth, L., & Hall, A. J. (2010). Validation and validity of diagnoses in the General Practice Research Database: a systematic review. British Journal of Clinical Pharmacology, 69(1), 4-14. doi:10.1111/j.1365-2125.2009.03537.x

Sáez, C., Zurriaga, O., Pérez-Panadés, J., Melchor, I., Robles, M., & García-Gómez, J. M. (2016). Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. Journal of the American Medical Informatics Association, 23(6), 1085-1095. doi:10.1093/jamia/ocw010

Tate AR , Dungey S , Glew S , et al . Quality of recording of diabetes in the UK: how does the GP's method of coding clinical data affect incidence estimates? cross-sectional study using the CPRD database. BMJ Open 2017;7:e012905.doi:10.1136/bmjopen-2016-012905

Calvert M , Shankar A , McManus RJ , et al . Effect of the quality and outcomes framework on diabetes care in the United Kingdom: retrospective cohort study. BMJ 2009;338:b1870.doi:10.1136/bmj.b1870

Sáez, C., Robles, M., & García-Gómez, J. M. (2016). Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statistical Methods in Medical Research, 26(1), 312-336. doi:10.1177/0962280214545122

Herrett, E., Gallagher, A. M., Bhaskaran, K., Forbes, H., Mathur, R., van Staa, T., & Smeeth, L. (2015). Data Resource Profile: Clinical Practice Research Datalink (CPRD). International Journal of Epidemiology, 44(3), 827-836. doi:10.1093/ije/dyv098

Herbert, A., Wijlaars, L., Zylbersztejn, A., Cromwell, D., & Hardelid, P. (2017). Data Resource Profile: Hospital Episode Statistics Admitted Patient Care (HES APC). International Journal of Epidemiology, 46(4), 1093-1093i. doi:10.1093/ije/dyx015

Chisholm J . The read clinical classification. BMJ 1990;300:1092.doi:10.1136/bmj.300.6732.1092

Denaxas, S., Gonzalez-Izquierdo, A., Direk, K., Fitzpatrick, N. K., Fatemifar, G., Banerjee, A., … Hemingway, H. (2019). UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER. Journal of the American Medical Informatics Association, 26(12), 1545-1559. doi:10.1093/jamia/ocz105

Department for Communities and Local Government . The English Index of Multiple Deprivation (IMD) 2015 - Guidance. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/464430/English_Index_of_Multiple_Deprivation_2015_-_Guidance.pdf [Accessed 8 Dec 2019].

Sáez, C., Rodrigues, P. P., Gama, J., Robles, M., & García-Gómez, J. M. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery, 29(4), 950-975. doi:10.1007/s10618-014-0378-6

Borg, I., & Groenen, P. (2003). Modern Multidimensional Scaling: Theory and Applications. Journal of Educational Measurement, 40(3), 277-280. doi:10.1111/j.1745-3984.2003.tb01108.x

Sáez, C., & García-Gómez, J. M. (2018). Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds. International Journal of Medical Informatics, 119, 109-124. doi:10.1016/j.ijmedinf.2018.09.015

Conrad, N., Judge, A., Tran, J., Mohseni, H., Hedgecott, D., Crespillo, A. P., … Rahimi, K. (2018). Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. The Lancet, 391(10120), 572-580. doi:10.1016/s0140-6736(17)32520-5

Herrett E , Shah AD , Boggon R , et al . Completeness and diagnostic validity of recording acute myocardial infarction events in primary care, hospital care, disease registry, and national mortality records: cohort study. BMJ 2013;346:f2350.doi:10.1136/bmj.f2350

Pujades-Rodriguez M , Timmis A , Stogiannis D , et al . Socioeconomic deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS One 2014;9:e104671.doi:10.1371/journal.pone.0104671

Lee S , Shafe ACE , Cowie MR . Uk stroke incidence, mortality and cardiovascular risk management 1999-2008: time-trend analysis from the general practice research database. BMJ Open 2011;1:e000269.doi:10.1136/bmjopen-2011-000269

Bhatnagar, P., Wickramasinghe, K., Williams, J., Rayner, M., & Townsend, N. (2015). The epidemiology of cardiovascular disease in the UK 2014. Heart, 101(15), 1182-1189. doi:10.1136/heartjnl-2015-307516

Taylor, C. J., Ordóñez-Mena, J. M., Roalfe, A. K., Lay-Flurrie, S., Jones, N. R., Marshall, T., & Hobbs, F. D. R. (2019). Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. BMJ, l223. doi:10.1136/bmj.l223

Gho JMIH , Schmidt AF , Pasea L , et al . An electronic health records cohort study on heart failure following myocardial infarction in England: incidence and predictors. BMJ Open 2018;8:e018331.doi:10.1136/bmjopen-2017-018331

Quint JK , Müllerova H , DiSantostefano RL , et al . Validation of chronic obstructive pulmonary disease recording in the clinical practice research Datalink (CPRD-GOLD). BMJ Open 2014;4:e005540.doi:10.1136/bmjopen-2014-005540

Bhaskaran K , Forbes HJ , Douglas I , et al . Representativeness and optimal use of body mass index (BMI) in the UK clinical practice research Datalink (CPRD). BMJ Open 2013;3:e003389.doi:10.1136/bmjopen-2013-003389

Booth, H. P., Prevost, A. T., & Gulliford, M. C. (2013). Validity of smoking prevalence estimates from primary care electronic health records compared with national population survey data for England, 2007 to 2011. Pharmacoepidemiology and Drug Safety, 22(12), 1357-1361. doi:10.1002/pds.3537

Booth H , Dedman D , Wolf A . CPRD aurum frequently asked questions (FAQs). CPRD 2019.

Burns, E. M., Rigby, E., Mamidanna, R., Bottle, A., Aylin, P., Ziprin, P., & Faiz, O. D. (2011). Systematic review of discharge coding accuracy. Journal of Public Health, 34(1), 138-148. doi:10.1093/pubmed/fdr054

Marmot, M. G., Stansfeld, S., Patel, C., North, F., Head, J., White, I., … Smith, G. D. (1991). Health inequalities among British civil servants: the Whitehall II study. The Lancet, 337(8754), 1387-1393. doi:10.1016/0140-6736(91)93068-k

Kivimäki, M., Batty, G. D., Singh-Manoux, A., Britton, A., Brunner, E. J., & Shipley, M. J. (2017). Validity of Cardiovascular Disease Event Ascertainment Using Linkage to UK Hospital Records. Epidemiology, 28(5), 735-739. doi:10.1097/ede.0000000000000688

Crosignani, P. G. (2003). Breast cancer and hormone-replacement therapy in the Million Women Study. Maturitas, 46(2), 91-92. doi:10.1016/j.maturitas.2003.09.002

Wright FL , Green J , Canoy D , et al . Vascular disease in women: comparison of diagnoses in hospital episode statistics and general practice records in England. BMC Med Res Methodol 2012;12:161.doi:10.1186/1471-2288-12-161

Herrett, E., Smeeth, L., Walker, L., & Weston, C. (2010). The Myocardial Ischaemia National Audit Project (MINAP). Heart, 96(16), 1264-1267. doi:10.1136/hrt.2009.192328

Silver LE , Heneghan C , Mehta Z , et al . Substantial underestimation of incidence of acute myocardial infarction by hospital discharge diagnostic coding data: a prospective population-based study. Heart 2009;95.

Health and Social Care Information Centre . Coding clinic guidance. 5th edn, 2010.

Health & Social Care Information Centre . National Clinical Coding Standards - ICD-10. 4th edn, 2013. https://hscic.kahootz.com/connect.ti/t_c_home/view?objectId=31445829

Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems, 12(4), 5-33. doi:10.1080/07421222.1996.11518099

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record