- -

Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015)

Show simple item record

Files in this item

dc.contributor.author Rockenschaub, Patrick es_ES
dc.contributor.author Nguyen, Vincent es_ES
dc.contributor.author Aldridge, Robert W. es_ES
dc.contributor.author Acosta, Dionisio es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.date.accessioned 2021-05-20T03:34:45Z
dc.date.available 2021-05-20T03:34:45Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166542
dc.description.abstract [EN] Objectives To demonstrate how data-driven variability methods can be used to identify changes in disease recording in two English electronic health records databases between 2001 and 2015. Design Repeated cross-sectional analysis that applied data-driven temporal variability methods to assess month-by-month changes in routinely collected medical data. A measure of difference between months was calculated based on joint distributions of age, gender, socioeconomic status and recorded cardiovascular diseases. Distances between months were used to identify temporal trends in data recording. Setting 400 English primary care practices from the Clinical Practice Research Datalink (CPRD GOLD) and 451 hospital providers from the Hospital Episode Statistics (HES). Main outcomes The proportion of patients (CPRD GOLD) and hospital admissions (HES) with a recorded cardiovascular disease (CPRD GOLD: coronary heart disease, heart failure, peripheral arterial disease, stroke; HES: International Classification of Disease codes I20-I69/G45). Results Both databases showed gradual changes in cardiovascular disease recording between 2001 and 2008. The recorded prevalence of included cardiovascular diseases in CPRD GOLD increased by 47%-62%, which partially reversed after 2008. For hospital records in HES, there was a relative decrease in angina pectoris (-34.4%) and unspecified stroke (-42.3%) over the same time period, with a concomitant increase in chronic coronary heart disease (+14.3%). Multiple abrupt changes in the use of myocardial infarction codes in hospital were found in March/April 2010, 2012 and 2014, possibly linked to updates of clinical coding guidelines. Conclusions Identified temporal variability could be related to potentially non-medical causes such as updated coding guidelines. These artificial changes may introduce temporal correlation among diagnoses inferred from routine data, violating the assumptions of frequently used statistical methods. Temporal variability measures provide an objective and robust technique to identify, and subsequently account for, those changes in electronic health records studies without any prior knowledge of the data collection process. es_ES
dc.description.sponsorship VN is funded by a Public Health England PhD Studentship. RWA is supported by a Wellcome Trust Clinical Research Career Development Fellowship (206602/Z/17/Z). JMGG and CS contributions to this work were partially supported by the MTS4up Spanish project (National Plan for Scientific and Technical Research and Innovation 2013-2016, No. DPI2016-80054-R), the CrowdHealth H2020-SC1-2016-CNECT project (No. 727560) (JMGG) and the Inadvance H2020-SC1-BHC-2018-2020 project (No. 825750). PR and DA did not receive any direct funding for this project. Access to the Clinical Practice Research Datalink was supported by the UK Economic and Social Research Council (ES/P008321/1). Access to aggregated Hospital Episode Statistics was provided by Public Health England. This work was further supported by Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and the Wellcome Trust. es_ES
dc.language Inglés es_ES
dc.publisher BMJ es_ES
dc.relation WT/206602/Z/17/Z es_ES
dc.relation ESRC/ES/P008321/1 es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/DPI2016-80054-R es_ES
dc.relation.ispartof BMJ Open es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1136/bmjopen-2019-034396 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825750/EU/Patient-centred pathways of early palliative care, supportive ecosystems and appraisal standard/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Rockenschaub, P.; Nguyen, V.; Aldridge, RW.; Acosta, D.; Garcia-Gomez, JM.; Sáez Silvestre, C. (2020). Data-driven discovery of changes in clinical code usage over time: a case-study on changes in cardiovascular disease recording in two English electronic health records databases (2001-2015). BMJ Open. 10(2):1-9. https://doi.org/10.1136/bmjopen-2019-034396 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1136/bmjopen-2019-034396 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2044-6055 es_ES
dc.identifier.pmid 32060159 es_ES
dc.identifier.pmcid PMC7045100 es_ES
dc.relation.pasarela S\435463 es_ES
dc.contributor.funder Wellcome Trust es_ES
dc.contributor.funder Welsh Government es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Scottish Government es_ES
dc.contributor.funder British Heart Foundation es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Medical Research Council, Reino Unido es_ES
dc.contributor.funder Economic and Social Research Council, Reino Unido es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Hripcsak, G., & Albers, D. J. (2013). Next-generation phenotyping of electronic health records. Journal of the American Medical Informatics Association, 20(1), 117-121. doi:10.1136/amiajnl-2012-001145 es_ES
dc.description.references Burton, P. R., Murtagh, M. J., Boyd, A., Williams, J. B., Dove, E. S., Wallace, S. E., … Knoppers, B. M. (2015). Data Safe Havens in health research and healthcare. Bioinformatics, 31(20), 3241-3248. doi:10.1093/bioinformatics/btv279 es_ES
dc.description.references Cruz-Correia R , Rodrigues P , Freitas A . Chapter: 4, Data quality and integration issues in electronic health records. In: Information discovery on electronic health records. CRC Press, 2009: 55–95. es_ES
dc.description.references Massoudi, B. L., Goodman, K. W., Gotham, I. J., Holmes, J. H., Lang, L., Miner, K., … Fu, P. C. (2012). An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference. Journal of the American Medical Informatics Association, 19(5), 688-695. doi:10.1136/amiajnl-2011-000507 es_ES
dc.description.references Schlegel, D. R., & Ficheur, G. (2017). Secondary Use of Patient Data: Review of the Literature Published in 2016. Yearbook of Medical Informatics, 26(01), 68-71. doi:10.15265/iy-2017-032 es_ES
dc.description.references Weiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144-151. doi:10.1136/amiajnl-2011-000681 es_ES
dc.description.references Herrett, E., Thomas, S. L., Schoonen, W. M., Smeeth, L., & Hall, A. J. (2010). Validation and validity of diagnoses in the General Practice Research Database: a systematic review. British Journal of Clinical Pharmacology, 69(1), 4-14. doi:10.1111/j.1365-2125.2009.03537.x es_ES
dc.description.references Sáez, C., Zurriaga, O., Pérez-Panadés, J., Melchor, I., Robles, M., & García-Gómez, J. M. (2016). Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories. Journal of the American Medical Informatics Association, 23(6), 1085-1095. doi:10.1093/jamia/ocw010 es_ES
dc.description.references Tate AR , Dungey S , Glew S , et al . Quality of recording of diabetes in the UK: how does the GP's method of coding clinical data affect incidence estimates? cross-sectional study using the CPRD database. BMJ Open 2017;7:e012905.doi:10.1136/bmjopen-2016-012905 es_ES
dc.description.references Calvert M , Shankar A , McManus RJ , et al . Effect of the quality and outcomes framework on diabetes care in the United Kingdom: retrospective cohort study. BMJ 2009;338:b1870.doi:10.1136/bmj.b1870 es_ES
dc.description.references Sáez, C., Robles, M., & García-Gómez, J. M. (2016). Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statistical Methods in Medical Research, 26(1), 312-336. doi:10.1177/0962280214545122 es_ES
dc.description.references Herrett, E., Gallagher, A. M., Bhaskaran, K., Forbes, H., Mathur, R., van Staa, T., & Smeeth, L. (2015). Data Resource Profile: Clinical Practice Research Datalink (CPRD). International Journal of Epidemiology, 44(3), 827-836. doi:10.1093/ije/dyv098 es_ES
dc.description.references Herbert, A., Wijlaars, L., Zylbersztejn, A., Cromwell, D., & Hardelid, P. (2017). Data Resource Profile: Hospital Episode Statistics Admitted Patient Care (HES APC). International Journal of Epidemiology, 46(4), 1093-1093i. doi:10.1093/ije/dyx015 es_ES
dc.description.references Chisholm J . The read clinical classification. BMJ 1990;300:1092.doi:10.1136/bmj.300.6732.1092 es_ES
dc.description.references Denaxas, S., Gonzalez-Izquierdo, A., Direk, K., Fitzpatrick, N. K., Fatemifar, G., Banerjee, A., … Hemingway, H. (2019). UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER. Journal of the American Medical Informatics Association, 26(12), 1545-1559. doi:10.1093/jamia/ocz105 es_ES
dc.description.references Department for Communities and Local Government . The English Index of Multiple Deprivation (IMD) 2015 - Guidance. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/464430/English_Index_of_Multiple_Deprivation_2015_-_Guidance.pdf [Accessed 8 Dec 2019]. es_ES
dc.description.references Sáez, C., Rodrigues, P. P., Gama, J., Robles, M., & García-Gómez, J. M. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery, 29(4), 950-975. doi:10.1007/s10618-014-0378-6 es_ES
dc.description.references Borg, I., & Groenen, P. (2003). Modern Multidimensional Scaling: Theory and Applications. Journal of Educational Measurement, 40(3), 277-280. doi:10.1111/j.1745-3984.2003.tb01108.x es_ES
dc.description.references Sáez, C., & García-Gómez, J. M. (2018). Kinematics of Big Biomedical Data to characterize temporal variability and seasonality of data repositories: Functional Data Analysis of data temporal evolution over non-parametric statistical manifolds. International Journal of Medical Informatics, 119, 109-124. doi:10.1016/j.ijmedinf.2018.09.015 es_ES
dc.description.references Conrad, N., Judge, A., Tran, J., Mohseni, H., Hedgecott, D., Crespillo, A. P., … Rahimi, K. (2018). Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. The Lancet, 391(10120), 572-580. doi:10.1016/s0140-6736(17)32520-5 es_ES
dc.description.references Herrett E , Shah AD , Boggon R , et al . Completeness and diagnostic validity of recording acute myocardial infarction events in primary care, hospital care, disease registry, and national mortality records: cohort study. BMJ 2013;346:f2350.doi:10.1136/bmj.f2350 es_ES
dc.description.references Pujades-Rodriguez M , Timmis A , Stogiannis D , et al . Socioeconomic deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS One 2014;9:e104671.doi:10.1371/journal.pone.0104671 es_ES
dc.description.references Lee S , Shafe ACE , Cowie MR . Uk stroke incidence, mortality and cardiovascular risk management 1999-2008: time-trend analysis from the general practice research database. BMJ Open 2011;1:e000269.doi:10.1136/bmjopen-2011-000269 es_ES
dc.description.references Bhatnagar, P., Wickramasinghe, K., Williams, J., Rayner, M., & Townsend, N. (2015). The epidemiology of cardiovascular disease in the UK 2014. Heart, 101(15), 1182-1189. doi:10.1136/heartjnl-2015-307516 es_ES
dc.description.references Taylor, C. J., Ordóñez-Mena, J. M., Roalfe, A. K., Lay-Flurrie, S., Jones, N. R., Marshall, T., & Hobbs, F. D. R. (2019). Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study. BMJ, l223. doi:10.1136/bmj.l223 es_ES
dc.description.references Gho JMIH , Schmidt AF , Pasea L , et al . An electronic health records cohort study on heart failure following myocardial infarction in England: incidence and predictors. BMJ Open 2018;8:e018331.doi:10.1136/bmjopen-2017-018331 es_ES
dc.description.references Quint JK , Müllerova H , DiSantostefano RL , et al . Validation of chronic obstructive pulmonary disease recording in the clinical practice research Datalink (CPRD-GOLD). BMJ Open 2014;4:e005540.doi:10.1136/bmjopen-2014-005540 es_ES
dc.description.references Bhaskaran K , Forbes HJ , Douglas I , et al . Representativeness and optimal use of body mass index (BMI) in the UK clinical practice research Datalink (CPRD). BMJ Open 2013;3:e003389.doi:10.1136/bmjopen-2013-003389 es_ES
dc.description.references Booth, H. P., Prevost, A. T., & Gulliford, M. C. (2013). Validity of smoking prevalence estimates from primary care electronic health records compared with national population survey data for England, 2007 to 2011. Pharmacoepidemiology and Drug Safety, 22(12), 1357-1361. doi:10.1002/pds.3537 es_ES
dc.description.references Booth H , Dedman D , Wolf A . CPRD aurum frequently asked questions (FAQs). CPRD 2019. es_ES
dc.description.references Burns, E. M., Rigby, E., Mamidanna, R., Bottle, A., Aylin, P., Ziprin, P., & Faiz, O. D. (2011). Systematic review of discharge coding accuracy. Journal of Public Health, 34(1), 138-148. doi:10.1093/pubmed/fdr054 es_ES
dc.description.references Marmot, M. G., Stansfeld, S., Patel, C., North, F., Head, J., White, I., … Smith, G. D. (1991). Health inequalities among British civil servants: the Whitehall II study. The Lancet, 337(8754), 1387-1393. doi:10.1016/0140-6736(91)93068-k es_ES
dc.description.references Kivimäki, M., Batty, G. D., Singh-Manoux, A., Britton, A., Brunner, E. J., & Shipley, M. J. (2017). Validity of Cardiovascular Disease Event Ascertainment Using Linkage to UK Hospital Records. Epidemiology, 28(5), 735-739. doi:10.1097/ede.0000000000000688 es_ES
dc.description.references Crosignani, P. G. (2003). Breast cancer and hormone-replacement therapy in the Million Women Study. Maturitas, 46(2), 91-92. doi:10.1016/j.maturitas.2003.09.002 es_ES
dc.description.references Wright FL , Green J , Canoy D , et al . Vascular disease in women: comparison of diagnoses in hospital episode statistics and general practice records in England. BMC Med Res Methodol 2012;12:161.doi:10.1186/1471-2288-12-161 es_ES
dc.description.references Herrett, E., Smeeth, L., Walker, L., & Weston, C. (2010). The Myocardial Ischaemia National Audit Project (MINAP). Heart, 96(16), 1264-1267. doi:10.1136/hrt.2009.192328 es_ES
dc.description.references Silver LE , Heneghan C , Mehta Z , et al . Substantial underestimation of incidence of acute myocardial infarction by hospital discharge diagnostic coding data: a prospective population-based study. Heart 2009;95. es_ES
dc.description.references Health and Social Care Information Centre . Coding clinic guidance. 5th edn, 2010. es_ES
dc.description.references Health & Social Care Information Centre . National Clinical Coding Standards - ICD-10. 4th edn, 2013. https://hscic.kahootz.com/connect.ti/t_c_home/view?objectId=31445829 es_ES
dc.description.references Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems, 12(4), 5-33. doi:10.1080/07421222.1996.11518099 es_ES


This item appears in the following Collection(s)

Show simple item record