- -

Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines

Show full item record

Piqueras, P.; De La Morena, J.; Sanchis-Pacheco, EJ.; Pitarch-Berná, R. (2020). Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines. Applied Sciences. 10(21):1-17. https://doi.org/10.3390/app10217634

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166575

Files in this item

Item Metadata

Title: Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines
Author: Piqueras, P. De La Morena, Joaquín Sanchis-Pacheco, Enrique José Pitarch-Berná, Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
[EN] Exhaust gas recirculation is one of the technologies that can be used to improve the efficiency of spark-ignition engines. However, apart from fuel consumption reduction, this technology has a significant impact on ...[+]
Subjects: Spark-ignition engines , Emissions , Fuel consumption , Exhaust gas recirculation
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10217634
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app10217634
Type: Artículo

References

Kolodziej, C. P., Pamminger, M., Sevik, J., Wallner, T., Wagnon, S. W., & Pitz, W. J. (2017). Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion. SAE International Journal of Fuels and Lubricants, 10(1), 82-94. doi:10.4271/2017-01-0671

Sjerić, M., Taritaš, I., Tomić, R., Blažić, M., Kozarac, D., & Lulić, Z. (2016). Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study. Energy Conversion and Management, 125, 26-39. doi:10.1016/j.enconman.2016.02.047

Grover, Jr., R. O., & Cleary, D. (2013). Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion. SAE Technical Paper Series. doi:10.4271/2013-01-1090 [+]
Kolodziej, C. P., Pamminger, M., Sevik, J., Wallner, T., Wagnon, S. W., & Pitz, W. J. (2017). Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion. SAE International Journal of Fuels and Lubricants, 10(1), 82-94. doi:10.4271/2017-01-0671

Sjerić, M., Taritaš, I., Tomić, R., Blažić, M., Kozarac, D., & Lulić, Z. (2016). Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study. Energy Conversion and Management, 125, 26-39. doi:10.1016/j.enconman.2016.02.047

Grover, Jr., R. O., & Cleary, D. (2013). Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion. SAE Technical Paper Series. doi:10.4271/2013-01-1090

Costa, M., Catapano, F., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine. Applied Energy, 180, 86-103. doi:10.1016/j.apenergy.2016.07.089

Alagumalai, A. (2014). Internal combustion engines: Progress and prospects. Renewable and Sustainable Energy Reviews, 38, 561-571. doi:10.1016/j.rser.2014.06.014

Dong, X., Wang, B., Yip, H. L., & Chan, Q. N. (2019). CO2 Emission of Electric and Gasoline Vehicles under Various Road Conditions for China, Japan, Europe and World Average—Prediction through Year 2040. Applied Sciences, 9(11), 2295. doi:10.3390/app9112295

Vafamehr, H., Cairns, A., Sampson, O., & Koupaie, M. M. (2016). The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine. Applied Energy, 179, 687-697. doi:10.1016/j.apenergy.2016.07.038

Gröger, O., Gasteiger, H. A., & Suchsland, J.-P. (2015). Review—Electromobility: Batteries or Fuel Cells? Journal of The Electrochemical Society, 162(14), A2605-A2622. doi:10.1149/2.0211514jes

Pham, A., & Jeftic, M. (2018). Characterization of Gaseous Emissions from Blended Plug-In Hybrid Electric Vehicles during High-Power Cold-Starts. SAE Technical Paper Series. doi:10.4271/2018-01-0428

Yamada, H., Inomata, S., & Tanimoto, H. (2017). Particle and VOC Emissions from Stoichiometric Gasoline Direct Injection Vehicles and Correlation Between Particle Number and Mass Emissions. Emission Control Science and Technology, 3(2), 135-141. doi:10.1007/s40825-016-0060-0

Zinola, S., Raux, S., & Leblanc, M. (2016). Persistent Particle Number Emissions Sources at the Tailpipe of Combustion Engines. SAE Technical Paper Series. doi:10.4271/2016-01-2283

Xie, F., Li, X., Su, Y., Hong, W., Jiang, B., & Han, L. (2016). Influence of air and EGR dilutions on improving performance of a high compression ratio spark-ignition engine fueled with methanol at light load. Applied Thermal Engineering, 94, 559-567. doi:10.1016/j.applthermaleng.2015.10.046

Wei, H., Zhu, T., Shu, G., Tan, L., & Wang, Y. (2012). Gasoline engine exhaust gas recirculation – A review. Applied Energy, 99, 534-544. doi:10.1016/j.apenergy.2012.05.011

Ghazikhani, M., Feyz, M. E., & Joharchi, A. (2010). Experimental investigation of the Exhaust Gas Recirculation effects on irreversibility and Brake Specific Fuel Consumption of indirect injection diesel engines. Applied Thermal Engineering, 30(13), 1711-1718. doi:10.1016/j.applthermaleng.2010.03.030

Al-Qurashi, K., Lueking, A. D., & Boehman, A. L. (2011). The deconvolution of the thermal, dilution, and chemical effects of exhaust gas recirculation (EGR) on the reactivity of engine and flame soot. Combustion and Flame, 158(9), 1696-1704. doi:10.1016/j.combustflame.2011.02.006

Ladommatos, N., Abdelhalim, S. M., Zhao, H., & Hu., Z. (1998). Effects of EGR on Heat Release in Diesel Combustion. SAE Technical Paper Series. doi:10.4271/980184

Li, T., Wu, D., & Xu, M. (2013). Thermodynamic analysis of EGR effects on the first and second law efficiencies of a boosted spark-ignited direct-injection gasoline engine. Energy Conversion and Management, 70, 130-138. doi:10.1016/j.enconman.2013.03.001

Roy, M. M., Tomita, E., Kawahara, N., Harada, Y., & Sakane, A. (2011). Comparison of performance and emissions of a supercharged dual-fuel engine fueled by hydrogen and hydrogen-containing gaseous fuels. International Journal of Hydrogen Energy, 36(12), 7339-7352. doi:10.1016/j.ijhydene.2011.03.070

Wang, Zhang, Wang, Han, & Chen. (2019). Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine. Applied Sciences, 9(19), 4133. doi:10.3390/app9194133

Caton, J. A. (2012). The thermodynamic characteristics of high efficiency, internal-combustion engines. Energy Conversion and Management, 58, 84-93. doi:10.1016/j.enconman.2012.01.005

Su, J., Xu, M., Li, T., Gao, Y., & Wang, J. (2014). Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Conversion and Management, 78, 65-73. doi:10.1016/j.enconman.2013.10.041

Gu, X., Huang, Z., Cai, J., Gong, J., Wu, X., & Lee, C. (2012). Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR. Fuel, 93, 611-617. doi:10.1016/j.fuel.2011.11.040

Galloni, E. (2009). Analyses about parameters that affect cyclic variation in a spark ignition engine. Applied Thermal Engineering, 29(5-6), 1131-1137. doi:10.1016/j.applthermaleng.2008.06.001

Bermúdez, V., Luján, J. M., Climent, H., & Campos, D. (2015). Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions. Applied Energy, 158, 459-473. doi:10.1016/j.apenergy.2015.08.071

Park, C., Kim, S., Kim, H., & Moriyoshi, Y. (2012). Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine. Energy, 41(1), 401-407. doi:10.1016/j.energy.2012.02.060

Galindo, J., Navarro, R., Tarí, D., & Moya, F. (2020). Development of an experimental test bench and a psychrometric model for assessing condensation on a low-pressure exhaust gas recirculation cooler. International Journal of Engine Research, 22(5), 1540-1550. doi:10.1177/1468087420909735

Luján, J. M., Dolz, V., Monsalve-Serrano, J., & Bernal Maldonado, M. A. (2019). High-pressure exhaust gas recirculation line condensation model of an internal combustion diesel engine operating at cold conditions. International Journal of Engine Research, 22(2), 407-416. doi:10.1177/1468087419868026

Boccardi, S., Catapano, F., Costa, M., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Optimization of a GDI engine operation in the absence of knocking through numerical 1D and 3D modeling. Advances in Engineering Software, 95, 38-50. doi:10.1016/j.advengsoft.2016.01.023

Pla, B., De La Morena, J., Bares, P., & Jiménez, I. (2020). Knock Analysis in the Crank Angle Domain for Low-Knocking Cycles Detection. SAE Technical Paper Series. doi:10.4271/2020-01-0549

Serrano, J., Climent, H., Navarro, R., & González-Domínguez, D. (2020). Methodology to Standardize and Improve the Calibration Process of a 1D Model of a GTDI Engine. SAE Technical Paper Series. doi:10.4271/2020-01-1008

Nishiyama, A., Le, M. K., Furui, T., & Ikeda, Y. (2019). The Relationship between In-Cylinder Flow-Field near Spark Plug Areas, the Spark Behavior, and the Combustion Performance inside an Optical S.I. Engine. Applied Sciences, 9(8), 1545. doi:10.3390/app9081545

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record