Mostrar el registro sencillo del ítem
dc.contributor.author | Piqueras, P. | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.contributor.author | Sanchis-Pacheco, Enrique José | es_ES |
dc.contributor.author | Pitarch-Berná, Rafael | es_ES |
dc.date.accessioned | 2021-05-21T03:31:28Z | |
dc.date.available | 2021-05-21T03:31:28Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166575 | |
dc.description.abstract | [EN] Exhaust gas recirculation is one of the technologies that can be used to improve the efficiency of spark-ignition engines. However, apart from fuel consumption reduction, this technology has a significant impact on exhaust gaseous emissions, inducing a significant reduction in nitrogen oxides and an increase in unburned hydrocarbons and carbon monoxide, which can affect operation of the aftertreatment system. In order to evaluate these effects, data extracted from design of experiments done on a multi-cylinder 1.3 L turbocharged spark-ignition engine with variable valve timing and low-pressure exhaust gas recirculation (EGR) are used. The test campaign covers the area of interest for the engine to be used in new-generation hybrid electric platforms. In general, external EGR provides an approximately linear decrease of nitrogen oxides and deterioration of unburned hydrocarbon emissions due to thermal and flame quenching effects. At low load, the impact on emissions is directly linked to actuation of the variable valve timing system due to the interaction of EGR with internal residuals. For the same external EGR rate, running with high valve overlap increases the amount of internal residuals trapped inside the cylinder, slowing down combustion and increasing Unburnt hydrocarbon (HC) emissions. However, low valve overlap (i.e., low internal residuals) operation implies a decrease in oxygen concentration in the exhaust line for the same air-fuel ratio inside the cylinders. At high load, interaction with the variable valve timing system is reduced, and general trends of HC increase and of oxygen and carbon monoxide decrease appear as EGR is introduced. Finally, a simple stoichiometric model evaluates the potential performance of a catalyst targeted for EGR operation. The results highlight that the decrease of nitrogen oxides and oxygen availability together with the increase of unburned hydrocarbons results in a huge reduction of the margin in oxygen availability to achieve a complete oxidation from a theoretical perspective. This implies the need to rely on the oxygen storage capability of the catalyst or the possibility to control at slightly lean conditions, taking advantage of the nitrogen oxide reduction at engine-out with EGR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Spark-ignition engines | es_ES |
dc.subject | Emissions | es_ES |
dc.subject | Fuel consumption | es_ES |
dc.subject | Exhaust gas recirculation | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10217634 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Piqueras, P.; De La Morena, J.; Sanchis-Pacheco, EJ.; Pitarch-Berná, R. (2020). Impact of Exhaust Gas Recirculation on Gaseous Emissions of Turbocharged Spark-Ignition Engines. Applied Sciences. 10(21):1-17. https://doi.org/10.3390/app10217634 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10217634 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\420491 | es_ES |
dc.description.references | Kolodziej, C. P., Pamminger, M., Sevik, J., Wallner, T., Wagnon, S. W., & Pitz, W. J. (2017). Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion. SAE International Journal of Fuels and Lubricants, 10(1), 82-94. doi:10.4271/2017-01-0671 | es_ES |
dc.description.references | Sjerić, M., Taritaš, I., Tomić, R., Blažić, M., Kozarac, D., & Lulić, Z. (2016). Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study. Energy Conversion and Management, 125, 26-39. doi:10.1016/j.enconman.2016.02.047 | es_ES |
dc.description.references | Grover, Jr., R. O., & Cleary, D. (2013). Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion. SAE Technical Paper Series. doi:10.4271/2013-01-1090 | es_ES |
dc.description.references | Costa, M., Catapano, F., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine. Applied Energy, 180, 86-103. doi:10.1016/j.apenergy.2016.07.089 | es_ES |
dc.description.references | Alagumalai, A. (2014). Internal combustion engines: Progress and prospects. Renewable and Sustainable Energy Reviews, 38, 561-571. doi:10.1016/j.rser.2014.06.014 | es_ES |
dc.description.references | Dong, X., Wang, B., Yip, H. L., & Chan, Q. N. (2019). CO2 Emission of Electric and Gasoline Vehicles under Various Road Conditions for China, Japan, Europe and World Average—Prediction through Year 2040. Applied Sciences, 9(11), 2295. doi:10.3390/app9112295 | es_ES |
dc.description.references | Vafamehr, H., Cairns, A., Sampson, O., & Koupaie, M. M. (2016). The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine. Applied Energy, 179, 687-697. doi:10.1016/j.apenergy.2016.07.038 | es_ES |
dc.description.references | Gröger, O., Gasteiger, H. A., & Suchsland, J.-P. (2015). Review—Electromobility: Batteries or Fuel Cells? Journal of The Electrochemical Society, 162(14), A2605-A2622. doi:10.1149/2.0211514jes | es_ES |
dc.description.references | Pham, A., & Jeftic, M. (2018). Characterization of Gaseous Emissions from Blended Plug-In Hybrid Electric Vehicles during High-Power Cold-Starts. SAE Technical Paper Series. doi:10.4271/2018-01-0428 | es_ES |
dc.description.references | Yamada, H., Inomata, S., & Tanimoto, H. (2017). Particle and VOC Emissions from Stoichiometric Gasoline Direct Injection Vehicles and Correlation Between Particle Number and Mass Emissions. Emission Control Science and Technology, 3(2), 135-141. doi:10.1007/s40825-016-0060-0 | es_ES |
dc.description.references | Zinola, S., Raux, S., & Leblanc, M. (2016). Persistent Particle Number Emissions Sources at the Tailpipe of Combustion Engines. SAE Technical Paper Series. doi:10.4271/2016-01-2283 | es_ES |
dc.description.references | Xie, F., Li, X., Su, Y., Hong, W., Jiang, B., & Han, L. (2016). Influence of air and EGR dilutions on improving performance of a high compression ratio spark-ignition engine fueled with methanol at light load. Applied Thermal Engineering, 94, 559-567. doi:10.1016/j.applthermaleng.2015.10.046 | es_ES |
dc.description.references | Wei, H., Zhu, T., Shu, G., Tan, L., & Wang, Y. (2012). Gasoline engine exhaust gas recirculation – A review. Applied Energy, 99, 534-544. doi:10.1016/j.apenergy.2012.05.011 | es_ES |
dc.description.references | Ghazikhani, M., Feyz, M. E., & Joharchi, A. (2010). Experimental investigation of the Exhaust Gas Recirculation effects on irreversibility and Brake Specific Fuel Consumption of indirect injection diesel engines. Applied Thermal Engineering, 30(13), 1711-1718. doi:10.1016/j.applthermaleng.2010.03.030 | es_ES |
dc.description.references | Al-Qurashi, K., Lueking, A. D., & Boehman, A. L. (2011). The deconvolution of the thermal, dilution, and chemical effects of exhaust gas recirculation (EGR) on the reactivity of engine and flame soot. Combustion and Flame, 158(9), 1696-1704. doi:10.1016/j.combustflame.2011.02.006 | es_ES |
dc.description.references | Ladommatos, N., Abdelhalim, S. M., Zhao, H., & Hu., Z. (1998). Effects of EGR on Heat Release in Diesel Combustion. SAE Technical Paper Series. doi:10.4271/980184 | es_ES |
dc.description.references | Li, T., Wu, D., & Xu, M. (2013). Thermodynamic analysis of EGR effects on the first and second law efficiencies of a boosted spark-ignited direct-injection gasoline engine. Energy Conversion and Management, 70, 130-138. doi:10.1016/j.enconman.2013.03.001 | es_ES |
dc.description.references | Roy, M. M., Tomita, E., Kawahara, N., Harada, Y., & Sakane, A. (2011). Comparison of performance and emissions of a supercharged dual-fuel engine fueled by hydrogen and hydrogen-containing gaseous fuels. International Journal of Hydrogen Energy, 36(12), 7339-7352. doi:10.1016/j.ijhydene.2011.03.070 | es_ES |
dc.description.references | Wang, Zhang, Wang, Han, & Chen. (2019). Numerical Simulation of Knock Combustion in a Downsizing Turbocharged Gasoline Direct Injection Engine. Applied Sciences, 9(19), 4133. doi:10.3390/app9194133 | es_ES |
dc.description.references | Caton, J. A. (2012). The thermodynamic characteristics of high efficiency, internal-combustion engines. Energy Conversion and Management, 58, 84-93. doi:10.1016/j.enconman.2012.01.005 | es_ES |
dc.description.references | Su, J., Xu, M., Li, T., Gao, Y., & Wang, J. (2014). Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine. Energy Conversion and Management, 78, 65-73. doi:10.1016/j.enconman.2013.10.041 | es_ES |
dc.description.references | Gu, X., Huang, Z., Cai, J., Gong, J., Wu, X., & Lee, C. (2012). Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR. Fuel, 93, 611-617. doi:10.1016/j.fuel.2011.11.040 | es_ES |
dc.description.references | Galloni, E. (2009). Analyses about parameters that affect cyclic variation in a spark ignition engine. Applied Thermal Engineering, 29(5-6), 1131-1137. doi:10.1016/j.applthermaleng.2008.06.001 | es_ES |
dc.description.references | Bermúdez, V., Luján, J. M., Climent, H., & Campos, D. (2015). Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions. Applied Energy, 158, 459-473. doi:10.1016/j.apenergy.2015.08.071 | es_ES |
dc.description.references | Park, C., Kim, S., Kim, H., & Moriyoshi, Y. (2012). Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine. Energy, 41(1), 401-407. doi:10.1016/j.energy.2012.02.060 | es_ES |
dc.description.references | Galindo, J., Navarro, R., Tarí, D., & Moya, F. (2020). Development of an experimental test bench and a psychrometric model for assessing condensation on a low-pressure exhaust gas recirculation cooler. International Journal of Engine Research, 22(5), 1540-1550. doi:10.1177/1468087420909735 | es_ES |
dc.description.references | Luján, J. M., Dolz, V., Monsalve-Serrano, J., & Bernal Maldonado, M. A. (2019). High-pressure exhaust gas recirculation line condensation model of an internal combustion diesel engine operating at cold conditions. International Journal of Engine Research, 22(2), 407-416. doi:10.1177/1468087419868026 | es_ES |
dc.description.references | Boccardi, S., Catapano, F., Costa, M., Sementa, P., Sorge, U., & Vaglieco, B. M. (2016). Optimization of a GDI engine operation in the absence of knocking through numerical 1D and 3D modeling. Advances in Engineering Software, 95, 38-50. doi:10.1016/j.advengsoft.2016.01.023 | es_ES |
dc.description.references | Pla, B., De La Morena, J., Bares, P., & Jiménez, I. (2020). Knock Analysis in the Crank Angle Domain for Low-Knocking Cycles Detection. SAE Technical Paper Series. doi:10.4271/2020-01-0549 | es_ES |
dc.description.references | Serrano, J., Climent, H., Navarro, R., & González-Domínguez, D. (2020). Methodology to Standardize and Improve the Calibration Process of a 1D Model of a GTDI Engine. SAE Technical Paper Series. doi:10.4271/2020-01-1008 | es_ES |
dc.description.references | Nishiyama, A., Le, M. K., Furui, T., & Ikeda, Y. (2019). The Relationship between In-Cylinder Flow-Field near Spark Plug Areas, the Spark Behavior, and the Combustion Performance inside an Optical S.I. Engine. Applied Sciences, 9(8), 1545. doi:10.3390/app9081545 | es_ES |