Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.x
Montalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766
Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010
[+]
Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.x
Montalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766
Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010
Turnbull, J. L., Adams, H. N., & Gorard, D. A. (2014). Review article: the diagnosis and management of food allergy and food intolerances. Alimentary Pharmacology & Therapeutics, 41(1), 3-25. doi:10.1111/apt.12984
Patriarca, G., Schiavino, D., Pecora, V., Lombardo, C., Pollastrini, E., Aruanno, A., … Nucera, E. (2008). Food allergy and food intolerance: diagnosis and treatment. Internal and Emergency Medicine, 4(1), 11-24. doi:10.1007/s11739-008-0183-6
Morais, S., Tortajada-Genaro, L. A., Maquieira, Á., & Gonzalez Martinez, M.-Á. (2020). Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends in Analytical Chemistry, 127, 115904. doi:10.1016/j.trac.2020.115904
Gendel, S. M. (2012). Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology, 63(2), 279-285. doi:10.1016/j.yrtph.2012.04.007
Bucchini, L., Guzzon, A., Poms, R., & Senyuva, H. (2016). Analysis and critical comparison of food allergen recalls from the European Union, USA, Canada, Hong Kong, Australia and New Zealand. Food Additives & Contaminants: Part A, 33(5), 760-771. doi:10.1080/19440049.2016.1169444
Yin, H.-Y., Chu, P.-T., Tsai, W.-C., & Wen, H.-W. (2016). Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 192, 934-942. doi:10.1016/j.foodchem.2015.06.112
Flom, J. D., & Sicherer, S. H. (2019). Epidemiology of Cow’s Milk Allergy. Nutrients, 11(5), 1051. doi:10.3390/nu11051051
Caubet, J.-C., & Wang, J. (2011). Current Understanding of Egg Allergy. Pediatric Clinics of North America, 58(2), 427-443. doi:10.1016/j.pcl.2011.02.014
Lopata, A. L., Kleine-Tebbe, J., & Kamath, S. D. (2016). Allergens and molecular diagnostics of shellfish allergy. Allergo Journal International, 25(7), 210-218. doi:10.1007/s40629-016-0124-2
Tong, W. S., Yuen, A. W., Wai, C. Y., Leung, N. Y., Chu, K. H., & Leung, P. S. (2018). Diagnosis of fish and shellfish allergies. Journal of Asthma and Allergy, Volume 11, 247-260. doi:10.2147/jaa.s142476
Weinberger, T., & Sicherer, S. (2018). Current perspectives on tree nut allergy: a review. Journal of Asthma and Allergy, Volume 11, 41-51. doi:10.2147/jaa.s141636
Cordle, C. T. (2004). Soy Protein Allergy: Incidence and Relative Severity. The Journal of Nutrition, 134(5), 1213S-1219S. doi:10.1093/jn/134.5.1213s
Cianferoni, A. (2016). Wheat allergy: diagnosis and management. Journal of Asthma and Allergy, 13. doi:10.2147/jaa.s81550
Pałgan, K., Żbikowska-Gotz, M., & Bartuzi, Z. (2018). Dangerous anaphylactic reaction to mustard. Archives of Medical Science, 14(2), 477-479. doi:10.5114/aoms.2016.60580
Guillamón, E., Rodríguez, J., Burbano, C., Muzquiz, M., Pedrosa, M. M., Cabanillas, B., … Cuadrado, C. (2010). Characterization of lupin major allergens (Lupinus albus
L.). Molecular Nutrition & Food Research, 54(11), 1668-1676. doi:10.1002/mnfr.200900452
Breiteneder, H., Hoffmann-Sommergruber, K., O’Riordain, G., Susani, M., Ahorn, H., Ebner, C., … Scheiner, O. (1995). Molecular Characterization of Api g 1, the Major Allergen of Celery (Apium graveolens), and Its Immumological and Structural Relationships to a Group of 17-kDa Tree Pollen Allergens. European Journal of Biochemistry, 233(2), 484-489. doi:10.1111/j.1432-1033.1995.484_2.x
Lipman, N. S., Jackson, L. R., Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR Journal, 46(3), 258-268. doi:10.1093/ilar.46.3.258
Ascoli, C. A., & Aggeler, B. (2018). Overlooked benefits of using polyclonal antibodies. BioTechniques, 65(3), 127-136. doi:10.2144/btn-2018-0065
Tranquet, O., Lupi, R., Echasserieau-Laporte, V., Pietri, M., Larré, C., & Denery-Papini, S. (2015). Characterization of Antibodies and Development of an Indirect Competitive Immunoassay for Detection of Deamidated Gluten. Journal of Agricultural and Food Chemistry, 63(22), 5403-5409. doi:10.1021/acs.jafc.5b00923
Costa, J., Ansari, P., Mafra, I., Oliveira, M. B. P. P., & Baumgartner, S. (2015). Development of a sandwich ELISA-type system for the detection and quantification of hazelnut in model chocolates. Food Chemistry, 173, 257-265. doi:10.1016/j.foodchem.2014.10.024
Schocker, F., Scharf, A., Kull, S., & Jappe, U. (2017). Detection of the Peanut Allergens Ara h 2 and Ara h 6 in Human Breast Milk: Development of 2 Sensitive and Specific Sandwich ELISA Assays. International Archives of Allergy and Immunology, 174(1), 17-25. doi:10.1159/000479388
He, S., Li, X., Gao, J., Tong, P., & Chen, H. (2017). Development of a H
2
O
2
‐sensitive quantum dots‐based fluorescent sandwich ELISA for sensitive detection of bovine
β
‐lactoglobulin by monoclonal antibody. Journal of the Science of Food and Agriculture, 98(2), 519-526. doi:10.1002/jsfa.8489
Castillo, D. S., & Cassola, A. (2017). Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLOS ONE, 12(7), e0182447. doi:10.1371/journal.pone.0182447
Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., & Ge, Y. (2011). Simultaneous Detection of Eight Food Allergens Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 59(13), 6889-6894. doi:10.1021/jf200933b
Kim, T.-E., Park, S.-W., Cho, N.-Y., Choi, S.-Y., Yong, T.-S., Nahm, B.-H., … Noh, G. (2002). Quantitative measurement of serum allergen-specific IgE on protein chip. Experimental & Molecular Medicine, 34(2), 152-158. doi:10.1038/emm.2002.22
Xi, J., & Shi, Q. (2016). Development of an Indirect Competitive ELISA Kit for the Detection of Soybean Allergenic Protein Gly m Bd 28K. Food Analytical Methods, 9(11), 2998-3005. doi:10.1007/s12161-016-0493-7
Segura-Gil, I., Blázquez-Soro, A., Galán-Malo, P., Mata, L., Tobajas, A. P., Sánchez, L., & Pérez, M. D. (2019). Development of sandwich and competitive ELISA formats to determine β-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control, 103, 78-85. doi:10.1016/j.foodcont.2019.03.035
Panda, R., & Garber, E. A. E. (2019). Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Analytical and Bioanalytical Chemistry, 411(20), 5159-5174. doi:10.1007/s00216-019-01893-0
Sharma, G. M., Khuda, S. E., Parker, C. H., Eischeid, A. C., & Pereira, M. (2016). Detection of Allergen Markers in Food: Analytical Methods. Food Safety, 65-121. doi:10.1002/9781119160588.ch4
Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A., & Baumgartner, S. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 395(1), 69-81. doi:10.1007/s00216-009-2715-y
Zheng, C., Wang, X., Lu, Y., & Liu, Y. (2012). Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control, 26(2), 446-452. doi:10.1016/j.foodcont.2012.01.040
MASIRI, J., BENOIT, L., MESHGI, M., DAY, J., NADALA, C., & SAMADPOUR, M. (2016). A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages. Journal of Food Protection, 79(9), 1572-1582. doi:10.4315/0362-028x.jfp-15-493
Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., … Baggiani, C. (2018). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 411(9), 1905-1913. doi:10.1007/s00216-018-1451-6
Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47-63. doi:10.1016/j.bios.2015.05.050
Li, J., & Macdonald, J. (2016). Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosensors and Bioelectronics, 83, 177-192. doi:10.1016/j.bios.2016.04.021
Bishop, J. D., Hsieh, H. V., Gasperino, D. J., & Weigl, B. H. (2019). Sensitivity enhancement in lateral flow assays: a systems perspective. Lab on a Chip, 19(15), 2486-2499. doi:10.1039/c9lc00104b
Wang, Y., Li, Z., Lin, H., Siddanakoppalu, P. N., Zhou, J., Chen, G., & Yu, Z. (2019). Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control, 106, 106714. doi:10.1016/j.foodcont.2019.106714
Wu, Z., He, D., Xu, E., Jiao, A., Chughtai, M. F. J., & Jin, Z. (2018). Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chemistry, 269, 375-379. doi:10.1016/j.foodchem.2018.07.011
PROTEON Express - Rapid test fot detection of allergens in food and working surfaces, Zeulab. (2018). https://www.zeulab.com/products.html/allergens/111-proteon-express.html accessed June 1, 2020).
Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., … Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219-11229. doi:10.1021/acs.jafc.9b02388
García-García, A., Madrid, R., González, I., García, T., & Martín, R. (2020). A novel approach to produce phage single domain antibody fragments for the detection of gluten in foods. Food Chemistry, 321, 126685. doi:10.1016/j.foodchem.2020.126685
Croote, D., & Quake, S. R. (2016). Food allergen detection by mass spectrometry: the role of systems biology. npj Systems Biology and Applications, 2(1). doi:10.1038/npjsba.2016.22
Sun, L., Lin, H., Li, Z., Sun, W., Wang, J., Wu, H., … Pavase, T. R. (2019). Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 276, 358-365. doi:10.1016/j.foodchem.2018.10.014
Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331, 127276. doi:10.1016/j.foodchem.2020.127276
Ma, X., Li, H., Zhang, J., Huang, W., Han, J., Ge, Y., … Chen, Y. (2020). Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control, 107, 106744. doi:10.1016/j.foodcont.2019.106744
Jira, W., & Münch, S. (2019). A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry, 275, 214-223. doi:10.1016/j.foodchem.2018.09.041
Monaci, L., De Angelis, E., Montemurro, N., & Pilolli, R. (2018). Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends in Analytical Chemistry, 106, 21-36. doi:10.1016/j.trac.2018.06.016
Bräcker, J., & Brockmeyer, J. (2018). Characterization and Detection of Food Allergens Using High-Resolution Mass Spectrometry: Current Status and Future Perspective. Journal of Agricultural and Food Chemistry, 66(34), 8935-8940. doi:10.1021/acs.jafc.8b02265
Marzano, V., Tilocca, B., Fiocchi, A. G., Vernocchi, P., Levi Mortera, S., Urbani, A., … Putignani, L. (2020). Perusal of food allergens analysis by mass spectrometry-based proteomics. Journal of Proteomics, 215, 103636. doi:10.1016/j.jprot.2020.103636
Pilolli, R., Nitride, C., Gillard, N., Huet, A.-C., van Poucke, C., de Loose, M., … Monaci, L. (2020). Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Research International, 128, 108747. doi:10.1016/j.foodres.2019.108747
Prado, M., Ortea, I., Vial, S., Rivas, J., Calo-Mata, P., & Barros-Velázquez, J. (2015). Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Critical Reviews in Food Science and Nutrition, 56(15), 2511-2542. doi:10.1080/10408398.2013.873767
Fraga, D., Meulia, T., & Fenster, S. (2008). Real‐Time PCR. Current Protocols Essential Laboratory Techniques, 00(1). doi:10.1002/9780470089941.et1003s00
Yoshimura, T., Kuribara, H., Kodama, T., Yamata, S., Futo, S., Watanabe, S., … Hino, A. (2005). Comparative Studies of the Quantification of Genetically Modified Organisms in Foods Processed from Maize and Soy Using Trial Producing. Journal of Agricultural and Food Chemistry, 53(6), 2060-2069. doi:10.1021/jf0483265
Suh, S.-M., Park, S.-B., Kim, M.-J., & Kim, H.-Y. (2019). Simultaneous detection of fruit allergen-coding genes in tomato, apple, peach and kiwi through multiplex PCR. Food Science and Biotechnology, 28(5), 1593-1598. doi:10.1007/s10068-019-00591-y
Suh, S.-M., Kim, M.-J., Kim, H.-I., Kim, H.-J., & Kim, H.-Y. (2020). A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry, 317, 126451. doi:10.1016/j.foodchem.2020.126451
Mustorp, S. L., Drømtorp, S. M., & Holck, A. L. (2011). Multiplex, Quantitative, Ligation-Dependent Probe Amplification for Determination of Allergens in Food. Journal of Agricultural and Food Chemistry, 59(10), 5231-5239. doi:10.1021/jf200545j
Cheng, F., Wu, J., Zhang, J., Pan, A., Quan, S., Zhang, D., … Yang, L. (2016). Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chemistry, 199, 799-808. doi:10.1016/j.foodchem.2015.12.058
Schouten, J. P. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), 57e-57. doi:10.1093/nar/gnf056
López-Calleja, I. M., García, A., Madrid, R., García, T., Martín, R., & González, I. (2017). Multiplex ligation-dependent probe amplification (MLPA) for simultaneous detection of DNA from sunflower, poppy, flaxseed, sesame and soy allergenic ingredients in commercial food products. Food Control, 71, 301-310. doi:10.1016/j.foodcont.2016.06.014
Costa, J., Amaral, J. S., Grazina, L., Oliveira, M. B. P. P., & Mafra, I. (2017). Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, 221, 1843-1850. doi:10.1016/j.foodchem.2016.10.091
Puente-Lelievre, C., & Eischeid, A. C. (2018). Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. Journal of Agricultural and Food Chemistry, 66(32), 8623-8629. doi:10.1021/acs.jafc.8b02053
Garino, C., De Paolis, A., Coïsson, J. D., Bianchi, D. M., Decastelli, L., & Arlorio, M. (2016). Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chemistry, 194, 980-985. doi:10.1016/j.foodchem.2015.08.114
Xiao, G., Qin, C., Wenju, Z., & Qin, C. (2016). Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food. Journal of Dairy Science, 99(3), 1716-1724. doi:10.3168/jds.2015-10255
Druml, B., & Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 158, 245-254. doi:10.1016/j.foodchem.2014.02.111
Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019
Ding, Y., Jiang, G., Huang, L., Chen, C., Sun, J., & Zhu, C. (2020). DNA barcoding coupled with high‐resolution melting analysis for nut species and walnut milk beverage authentication. Journal of the Science of Food and Agriculture, 100(6), 2372-2379. doi:10.1002/jsfa.10241
Fernandes, T. J. R., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2017). DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chemistry, 230, 49-57. doi:10.1016/j.foodchem.2017.03.015
Pereira, L., Gomes, S., Barrias, S., Fernandes, J. R., & Martins-Lopes, P. (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International, 103, 170-181. doi:10.1016/j.foodres.2017.10.026
Martín-Fernández, B., Costa, J., de-los-Santos-Álvarez, N., López-Ruiz, B., Oliveira, M. B. P. P., & Mafra, I. (2016). High resolution melting analysis as a new approach to discriminate gluten-containing cereals. Food Chemistry, 211, 383-391. doi:10.1016/j.foodchem.2016.05.067
Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., … Colston, B. W. (2011). High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Analytical Chemistry, 83(22), 8604-8610. doi:10.1021/ac202028g
Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., … Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003-1005. doi:10.1038/nmeth.2633
Deprez, L., Corbisier, P., Kortekaas, A.-M., Mazoua, S., Beaz Hidalgo, R., Trapmann, S., & Emons, H. (2016). Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomolecular Detection and Quantification, 9, 29-39. doi:10.1016/j.bdq.2016.08.002
Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., & Pan, L. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS ONE, 12(8), e0181949. doi:10.1371/journal.pone.0181949
Witte, A. K., Mester, P., Fister, S., Witte, M., Schoder, D., & Rossmanith, P. (2016). A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay - Reduction of Ambiguous Results in ddPCR. PLOS ONE, 11(12), e0168179. doi:10.1371/journal.pone.0168179
Mayer, W., Schuller, M., Viehauser, M. C., & Hochegger, R. (2018). Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology, 245(2), 499-509. doi:10.1007/s00217-018-3182-5
Köppel, R., Ledermann, R., van Velsen, F., Ganeshan, A., & Guertler, P. (2020). Duplex digital droplet PCR for the determination of apricot kernels in marzipan. European Food Research and Technology, 246(5), 965-970. doi:10.1007/s00217-020-03463-6
Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877-882. doi:10.1038/nprot.2008.57
Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochemical and Biophysical Research Communications, 289(1), 150-154. doi:10.1006/bbrc.2001.5921
Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), 63e-63. doi:10.1093/nar/28.12.e63
Khorosheva, E. M., Karymov, M. A., Selck, D. A., & Ismagilov, R. F. (2015). Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Research, 44(2), e10-e10. doi:10.1093/nar/gkv877
Garrido-Maestu, A., Azinheiro, S., Fuciños, P., Carvalho, J., & Prado, M. (2018). Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR). Food Chemistry, 246, 156-163. doi:10.1016/j.foodchem.2017.11.005
Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2018). Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. Food Chemistry, 257, 67-74. doi:10.1016/j.foodchem.2018.02.124
Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2020). Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay. European Food Research and Technology, 246(4), 759-766. doi:10.1007/s00217-020-03440-z
Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., & O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32(1), 3-13. doi:10.1016/s0141-0229(02)00232-6
Poltronieri, P., Mezzolla, V., Primiceri, E., & Maruccio, G. (2014). Biosensors for the Detection of Food Pathogens. Foods, 3(3), 511-526. doi:10.3390/foods3030511
Thakur, M. S., & Ragavan, K. V. (2012). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641. doi:10.1007/s13197-012-0783-z
Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010
Habimana, J. de D., Ji, J., & Sun, X. (2018). Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters, 51(18), 2933-2966. doi:10.1080/00032719.2018.1458104
Yuan, D., Fang, X., Liu, Y., Kong, J., & Chen, Q. (2019). A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. The Analyst, 144(12), 3886-3891. doi:10.1039/c9an00394k
Yuan, D., Kong, J., Li, X., Fang, X., & Chen, Q. (2018). Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean. Scientific Reports, 8(1). doi:10.1038/s41598-018-26982-5
Tortajada-Genaro, L. A., Santiago-Felipe, S., Morais, S., Gabaldón, J. A., Puchades, R., & Maquieira, Á. (2011). Multiplex DNA Detection of Food Allergens on a Digital Versatile Disk. Journal of Agricultural and Food Chemistry, 60(1), 36-43. doi:10.1021/jf2037032
Badran, A. A., Morais, S., & Maquieira, Á. (2017). Simultaneous determination of four food allergens using compact disc immunoassaying technology. Analytical and Bioanalytical Chemistry, 409(9), 2261-2268. doi:10.1007/s00216-016-0170-0
Zhang, Y., Wu, Q., Wei, X., Zhang, J., & Mo, S. (2016). DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchimica Acta, 184(2), 633-639. doi:10.1007/s00604-016-2042-x
Weng, X., & Neethirajan, S. (2016). A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors and Bioelectronics, 85, 649-656. doi:10.1016/j.bios.2016.05.072
Jiang, D., Jiang, H., Ji, J., Sun, X., Qian, H., Zhang, G., & Tang, L. (2014). Mast-Cell-Based Fluorescence Biosensor for Rapid Detection of Major Fish Allergen Parvalbumin. Journal of Agricultural and Food Chemistry, 62(27), 6473-6480. doi:10.1021/jf501382t
Jauset-Rubio, M., Svobodová, M., Mairal, T., McNeil, C., Keegan, N., Saeed, A., … O´Sullivan, C. K. (2016). Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Scientific Reports, 6(1). doi:10.1038/srep37732
Ashley, J., D’Aurelio, R., Piekarska, M., Temblay, J., Pleasants, M., Trinh, L., … Tothill, I. (2018). Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors, 8(2), 32. doi:10.3390/bios8020032
Ashley, J., Piekarska, M., Segers, C., Trinh, L., Rodgers, T., Willey, R., & Tothill, I. E. (2017). An SPR based sensor for allergens detection. Biosensors and Bioelectronics, 88, 109-113. doi:10.1016/j.bios.2016.07.101
Ashley, J., Shahbazi, M.-A., Kant, K., Chidambara, V. A., Wolff, A., Bang, D. D., & Sun, Y. (2017). Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors and Bioelectronics, 91, 606-615. doi:10.1016/j.bios.2017.01.018
Zhou, J., Wang, Y., Qian, Y., Zhang, T., Zheng, L., & Fu, L. (2020). Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control, 107, 106547. doi:10.1016/j.foodcont.2019.02.041
Thevenot, D. R., Tóth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry, 71(12), 2333-2348. doi:10.1351/pac199971122333
Pereira-Barros, M. A., Barroso, M. F., Martín-Pedraza, L., Vargas, E., Benedé, S., Villalba, M., … Pingarrón, J. M. (2019). Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosensors and Bioelectronics, 137, 171-177. doi:10.1016/j.bios.2019.05.011
Angulo-Ibáñez, A., Eletxigerra, U., Lasheras, X., Campuzano, S., & Merino, S. (2019). Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta, 1079, 94-102. doi:10.1016/j.aca.2019.06.030
Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., … Lee, H. (2017). Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS Nano, 11(10), 10062-10069. doi:10.1021/acsnano.7b04318
Alves, R. C., Pimentel, F. B., Nouws, H. P. A., Marques, R. C. B., González-García, M. B., Oliveira, M. B. P. P., & Delerue-Matos, C. (2015). Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 64, 19-24. doi:10.1016/j.bios.2014.08.026
Jiang, H., Jiang, D., Zhu, P., Pi, F., Ji, J., Sun, C., … Sun, X. (2016). A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors and Bioelectronics, 83, 126-133. doi:10.1016/j.bios.2016.04.028
Jiang, D., Zhu, P., Jiang, H., Ji, J., Sun, X., Gu, W., & Zhang, G. (2015). Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors and Bioelectronics, 70, 482-490. doi:10.1016/j.bios.2015.03.058
Ng, E., Nadeau, K. C., & Wang, S. X. (2016). Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosensors and Bioelectronics, 80, 359-365. doi:10.1016/j.bios.2016.02.002
Angelopoulou, M., Petrou, P. S., Makarona, E., Haasnoot, W., Moser, I., Jobst, G., … Kakabakos, S. E. (2018). Ultrafast Multiplexed-Allergen Detection through Advanced Fluidic Design and Monolithic Interferometric Silicon Chips. Analytical Chemistry, 90(15), 9559-9567. doi:10.1021/acs.analchem.8b02321
Ito, K., Yamamoto, T., Oyama, Y., Tsuruma, R., Saito, E., Saito, Y., … Shoji, M. (2016). Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Analytical and Bioanalytical Chemistry, 408(22), 5973-5984. doi:10.1007/s00216-016-9438-7
Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., … Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240. doi:10.1016/j.fct.2015.03.005
[-]