- -

Recent advances and challenges in food-borne allergen detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent advances and challenges in food-borne allergen detection

Mostrar el registro completo del ítem

Sena-Torralba, A.; Pallás-Tamarit, Y.; Morais, S.; Maquieira Catala, A. (2020). Recent advances and challenges in food-borne allergen detection. TrAC Trends in Analytical Chemistry. 132:1-21. https://doi.org/10.1016/j.trac.2020.116050

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166588

Ficheros en el ítem

Metadatos del ítem

Título: Recent advances and challenges in food-borne allergen detection
Autor: Sena-Torralba, Amadeo Pallás-Tamarit, Yeray Morais, Sergi Maquieira Catala, Angel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Food allergy is reported as the commonest adverse reaction to food components, whose prevalence has increased in recent years. As food avoidance is mainly in practice the only way to prevent hypersensitive consumers ...[+]
Palabras clave: Food-borne allergens , Bioanalytical methods , Immunoassay , Nucleic-acid detection , Biosensors
Derechos de uso: Reserva de todos los derechos
Fuente:
TrAC Trends in Analytical Chemistry. (issn: 0165-9936 )
DOI: 10.1016/j.trac.2020.116050
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.trac.2020.116050
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2016-75749-R/ES/BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION EN APLICACIONES CLINICAS/
Agradecimientos:
This work has been funded by the Agencia Estatal de Investigacion, Spain (CTQ2016-75749-R, FEDER)
Tipo: Artículo

References

Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.x

Montalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766

Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010 [+]
Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.x

Montalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766

Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010

Turnbull, J. L., Adams, H. N., & Gorard, D. A. (2014). Review article: the diagnosis and management of food allergy and food intolerances. Alimentary Pharmacology & Therapeutics, 41(1), 3-25. doi:10.1111/apt.12984

Patriarca, G., Schiavino, D., Pecora, V., Lombardo, C., Pollastrini, E., Aruanno, A., … Nucera, E. (2008). Food allergy and food intolerance: diagnosis and treatment. Internal and Emergency Medicine, 4(1), 11-24. doi:10.1007/s11739-008-0183-6

Morais, S., Tortajada-Genaro, L. A., Maquieira, Á., & Gonzalez Martinez, M.-Á. (2020). Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends in Analytical Chemistry, 127, 115904. doi:10.1016/j.trac.2020.115904

Gendel, S. M. (2012). Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology, 63(2), 279-285. doi:10.1016/j.yrtph.2012.04.007

Bucchini, L., Guzzon, A., Poms, R., & Senyuva, H. (2016). Analysis and critical comparison of food allergen recalls from the European Union, USA, Canada, Hong Kong, Australia and New Zealand. Food Additives & Contaminants: Part A, 33(5), 760-771. doi:10.1080/19440049.2016.1169444

Yin, H.-Y., Chu, P.-T., Tsai, W.-C., & Wen, H.-W. (2016). Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 192, 934-942. doi:10.1016/j.foodchem.2015.06.112

Flom, J. D., & Sicherer, S. H. (2019). Epidemiology of Cow’s Milk Allergy. Nutrients, 11(5), 1051. doi:10.3390/nu11051051

Caubet, J.-C., & Wang, J. (2011). Current Understanding of Egg Allergy. Pediatric Clinics of North America, 58(2), 427-443. doi:10.1016/j.pcl.2011.02.014

Lopata, A. L., Kleine-Tebbe, J., & Kamath, S. D. (2016). Allergens and molecular diagnostics of shellfish allergy. Allergo Journal International, 25(7), 210-218. doi:10.1007/s40629-016-0124-2

Tong, W. S., Yuen, A. W., Wai, C. Y., Leung, N. Y., Chu, K. H., & Leung, P. S. (2018). Diagnosis of fish and shellfish allergies. Journal of Asthma and Allergy, Volume 11, 247-260. doi:10.2147/jaa.s142476

Weinberger, T., & Sicherer, S. (2018). Current perspectives on tree nut allergy: a review. Journal of Asthma and Allergy, Volume 11, 41-51. doi:10.2147/jaa.s141636

Cordle, C. T. (2004). Soy Protein Allergy: Incidence and Relative Severity. The Journal of Nutrition, 134(5), 1213S-1219S. doi:10.1093/jn/134.5.1213s

Cianferoni, A. (2016). Wheat allergy: diagnosis and management. Journal of Asthma and Allergy, 13. doi:10.2147/jaa.s81550

Pałgan, K., Żbikowska-Gotz, M., & Bartuzi, Z. (2018). Dangerous anaphylactic reaction to mustard. Archives of Medical Science, 14(2), 477-479. doi:10.5114/aoms.2016.60580

Guillamón, E., Rodríguez, J., Burbano, C., Muzquiz, M., Pedrosa, M. M., Cabanillas, B., … Cuadrado, C. (2010). Characterization of lupin major allergens (Lupinus albus L.). Molecular Nutrition & Food Research, 54(11), 1668-1676. doi:10.1002/mnfr.200900452

Breiteneder, H., Hoffmann-Sommergruber, K., O’Riordain, G., Susani, M., Ahorn, H., Ebner, C., … Scheiner, O. (1995). Molecular Characterization of Api g 1, the Major Allergen of Celery (Apium graveolens), and Its Immumological and Structural Relationships to a Group of 17-kDa Tree Pollen Allergens. European Journal of Biochemistry, 233(2), 484-489. doi:10.1111/j.1432-1033.1995.484_2.x

Lipman, N. S., Jackson, L. R., Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR Journal, 46(3), 258-268. doi:10.1093/ilar.46.3.258

Ascoli, C. A., & Aggeler, B. (2018). Overlooked benefits of using polyclonal antibodies. BioTechniques, 65(3), 127-136. doi:10.2144/btn-2018-0065

Tranquet, O., Lupi, R., Echasserieau-Laporte, V., Pietri, M., Larré, C., & Denery-Papini, S. (2015). Characterization of Antibodies and Development of an Indirect Competitive Immunoassay for Detection of Deamidated Gluten. Journal of Agricultural and Food Chemistry, 63(22), 5403-5409. doi:10.1021/acs.jafc.5b00923

Costa, J., Ansari, P., Mafra, I., Oliveira, M. B. P. P., & Baumgartner, S. (2015). Development of a sandwich ELISA-type system for the detection and quantification of hazelnut in model chocolates. Food Chemistry, 173, 257-265. doi:10.1016/j.foodchem.2014.10.024

Schocker, F., Scharf, A., Kull, S., & Jappe, U. (2017). Detection of the Peanut Allergens Ara h 2 and Ara h 6 in Human Breast Milk: Development of 2 Sensitive and Specific Sandwich ELISA Assays. International Archives of Allergy and Immunology, 174(1), 17-25. doi:10.1159/000479388

He, S., Li, X., Gao, J., Tong, P., & Chen, H. (2017). Development of a H 2 O 2 ‐sensitive quantum dots‐based fluorescent sandwich ELISA for sensitive detection of bovine β ‐lactoglobulin by monoclonal antibody. Journal of the Science of Food and Agriculture, 98(2), 519-526. doi:10.1002/jsfa.8489

Castillo, D. S., & Cassola, A. (2017). Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLOS ONE, 12(7), e0182447. doi:10.1371/journal.pone.0182447

Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., & Ge, Y. (2011). Simultaneous Detection of Eight Food Allergens Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 59(13), 6889-6894. doi:10.1021/jf200933b

Kim, T.-E., Park, S.-W., Cho, N.-Y., Choi, S.-Y., Yong, T.-S., Nahm, B.-H., … Noh, G. (2002). Quantitative measurement of serum allergen-specific IgE on protein chip. Experimental & Molecular Medicine, 34(2), 152-158. doi:10.1038/emm.2002.22

Xi, J., & Shi, Q. (2016). Development of an Indirect Competitive ELISA Kit for the Detection of Soybean Allergenic Protein Gly m Bd 28K. Food Analytical Methods, 9(11), 2998-3005. doi:10.1007/s12161-016-0493-7

Segura-Gil, I., Blázquez-Soro, A., Galán-Malo, P., Mata, L., Tobajas, A. P., Sánchez, L., & Pérez, M. D. (2019). Development of sandwich and competitive ELISA formats to determine β-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control, 103, 78-85. doi:10.1016/j.foodcont.2019.03.035

Panda, R., & Garber, E. A. E. (2019). Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Analytical and Bioanalytical Chemistry, 411(20), 5159-5174. doi:10.1007/s00216-019-01893-0

Sharma, G. M., Khuda, S. E., Parker, C. H., Eischeid, A. C., & Pereira, M. (2016). Detection of Allergen Markers in Food: Analytical Methods. Food Safety, 65-121. doi:10.1002/9781119160588.ch4

Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A., & Baumgartner, S. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 395(1), 69-81. doi:10.1007/s00216-009-2715-y

Zheng, C., Wang, X., Lu, Y., & Liu, Y. (2012). Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control, 26(2), 446-452. doi:10.1016/j.foodcont.2012.01.040

MASIRI, J., BENOIT, L., MESHGI, M., DAY, J., NADALA, C., & SAMADPOUR, M. (2016). A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages. Journal of Food Protection, 79(9), 1572-1582. doi:10.4315/0362-028x.jfp-15-493

Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., … Baggiani, C. (2018). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 411(9), 1905-1913. doi:10.1007/s00216-018-1451-6

Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47-63. doi:10.1016/j.bios.2015.05.050

Li, J., & Macdonald, J. (2016). Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosensors and Bioelectronics, 83, 177-192. doi:10.1016/j.bios.2016.04.021

Bishop, J. D., Hsieh, H. V., Gasperino, D. J., & Weigl, B. H. (2019). Sensitivity enhancement in lateral flow assays: a systems perspective. Lab on a Chip, 19(15), 2486-2499. doi:10.1039/c9lc00104b

Wang, Y., Li, Z., Lin, H., Siddanakoppalu, P. N., Zhou, J., Chen, G., & Yu, Z. (2019). Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control, 106, 106714. doi:10.1016/j.foodcont.2019.106714

Wu, Z., He, D., Xu, E., Jiao, A., Chughtai, M. F. J., & Jin, Z. (2018). Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chemistry, 269, 375-379. doi:10.1016/j.foodchem.2018.07.011

PROTEON Express - Rapid test fot detection of allergens in food and working surfaces, Zeulab. (2018). https://www.zeulab.com/products.html/allergens/111-proteon-express.html accessed June 1, 2020).

Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., … Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219-11229. doi:10.1021/acs.jafc.9b02388

García-García, A., Madrid, R., González, I., García, T., & Martín, R. (2020). A novel approach to produce phage single domain antibody fragments for the detection of gluten in foods. Food Chemistry, 321, 126685. doi:10.1016/j.foodchem.2020.126685

Croote, D., & Quake, S. R. (2016). Food allergen detection by mass spectrometry: the role of systems biology. npj Systems Biology and Applications, 2(1). doi:10.1038/npjsba.2016.22

Sun, L., Lin, H., Li, Z., Sun, W., Wang, J., Wu, H., … Pavase, T. R. (2019). Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 276, 358-365. doi:10.1016/j.foodchem.2018.10.014

Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331, 127276. doi:10.1016/j.foodchem.2020.127276

Ma, X., Li, H., Zhang, J., Huang, W., Han, J., Ge, Y., … Chen, Y. (2020). Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control, 107, 106744. doi:10.1016/j.foodcont.2019.106744

Jira, W., & Münch, S. (2019). A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry, 275, 214-223. doi:10.1016/j.foodchem.2018.09.041

Monaci, L., De Angelis, E., Montemurro, N., & Pilolli, R. (2018). Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends in Analytical Chemistry, 106, 21-36. doi:10.1016/j.trac.2018.06.016

Bräcker, J., & Brockmeyer, J. (2018). Characterization and Detection of Food Allergens Using High-Resolution Mass Spectrometry: Current Status and Future Perspective. Journal of Agricultural and Food Chemistry, 66(34), 8935-8940. doi:10.1021/acs.jafc.8b02265

Marzano, V., Tilocca, B., Fiocchi, A. G., Vernocchi, P., Levi Mortera, S., Urbani, A., … Putignani, L. (2020). Perusal of food allergens analysis by mass spectrometry-based proteomics. Journal of Proteomics, 215, 103636. doi:10.1016/j.jprot.2020.103636

Pilolli, R., Nitride, C., Gillard, N., Huet, A.-C., van Poucke, C., de Loose, M., … Monaci, L. (2020). Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Research International, 128, 108747. doi:10.1016/j.foodres.2019.108747

Prado, M., Ortea, I., Vial, S., Rivas, J., Calo-Mata, P., & Barros-Velázquez, J. (2015). Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Critical Reviews in Food Science and Nutrition, 56(15), 2511-2542. doi:10.1080/10408398.2013.873767

Fraga, D., Meulia, T., & Fenster, S. (2008). Real‐Time PCR. Current Protocols Essential Laboratory Techniques, 00(1). doi:10.1002/9780470089941.et1003s00

Yoshimura, T., Kuribara, H., Kodama, T., Yamata, S., Futo, S., Watanabe, S., … Hino, A. (2005). Comparative Studies of the Quantification of Genetically Modified Organisms in Foods Processed from Maize and Soy Using Trial Producing. Journal of Agricultural and Food Chemistry, 53(6), 2060-2069. doi:10.1021/jf0483265

Suh, S.-M., Park, S.-B., Kim, M.-J., & Kim, H.-Y. (2019). Simultaneous detection of fruit allergen-coding genes in tomato, apple, peach and kiwi through multiplex PCR. Food Science and Biotechnology, 28(5), 1593-1598. doi:10.1007/s10068-019-00591-y

Suh, S.-M., Kim, M.-J., Kim, H.-I., Kim, H.-J., & Kim, H.-Y. (2020). A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry, 317, 126451. doi:10.1016/j.foodchem.2020.126451

Mustorp, S. L., Drømtorp, S. M., & Holck, A. L. (2011). Multiplex, Quantitative, Ligation-Dependent Probe Amplification for Determination of Allergens in Food. Journal of Agricultural and Food Chemistry, 59(10), 5231-5239. doi:10.1021/jf200545j

Cheng, F., Wu, J., Zhang, J., Pan, A., Quan, S., Zhang, D., … Yang, L. (2016). Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chemistry, 199, 799-808. doi:10.1016/j.foodchem.2015.12.058

Schouten, J. P. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), 57e-57. doi:10.1093/nar/gnf056

López-Calleja, I. M., García, A., Madrid, R., García, T., Martín, R., & González, I. (2017). Multiplex ligation-dependent probe amplification (MLPA) for simultaneous detection of DNA from sunflower, poppy, flaxseed, sesame and soy allergenic ingredients in commercial food products. Food Control, 71, 301-310. doi:10.1016/j.foodcont.2016.06.014

Costa, J., Amaral, J. S., Grazina, L., Oliveira, M. B. P. P., & Mafra, I. (2017). Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, 221, 1843-1850. doi:10.1016/j.foodchem.2016.10.091

Puente-Lelievre, C., & Eischeid, A. C. (2018). Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. Journal of Agricultural and Food Chemistry, 66(32), 8623-8629. doi:10.1021/acs.jafc.8b02053

Garino, C., De Paolis, A., Coïsson, J. D., Bianchi, D. M., Decastelli, L., & Arlorio, M. (2016). Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chemistry, 194, 980-985. doi:10.1016/j.foodchem.2015.08.114

Xiao, G., Qin, C., Wenju, Z., & Qin, C. (2016). Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food. Journal of Dairy Science, 99(3), 1716-1724. doi:10.3168/jds.2015-10255

Druml, B., & Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 158, 245-254. doi:10.1016/j.foodchem.2014.02.111

Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019

Ding, Y., Jiang, G., Huang, L., Chen, C., Sun, J., & Zhu, C. (2020). DNA barcoding coupled with high‐resolution melting analysis for nut species and walnut milk beverage authentication. Journal of the Science of Food and Agriculture, 100(6), 2372-2379. doi:10.1002/jsfa.10241

Fernandes, T. J. R., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2017). DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chemistry, 230, 49-57. doi:10.1016/j.foodchem.2017.03.015

Pereira, L., Gomes, S., Barrias, S., Fernandes, J. R., & Martins-Lopes, P. (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International, 103, 170-181. doi:10.1016/j.foodres.2017.10.026

Martín-Fernández, B., Costa, J., de-los-Santos-Álvarez, N., López-Ruiz, B., Oliveira, M. B. P. P., & Mafra, I. (2016). High resolution melting analysis as a new approach to discriminate gluten-containing cereals. Food Chemistry, 211, 383-391. doi:10.1016/j.foodchem.2016.05.067

Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., … Colston, B. W. (2011). High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Analytical Chemistry, 83(22), 8604-8610. doi:10.1021/ac202028g

Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., … Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003-1005. doi:10.1038/nmeth.2633

Deprez, L., Corbisier, P., Kortekaas, A.-M., Mazoua, S., Beaz Hidalgo, R., Trapmann, S., & Emons, H. (2016). Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomolecular Detection and Quantification, 9, 29-39. doi:10.1016/j.bdq.2016.08.002

Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., & Pan, L. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS ONE, 12(8), e0181949. doi:10.1371/journal.pone.0181949

Witte, A. K., Mester, P., Fister, S., Witte, M., Schoder, D., & Rossmanith, P. (2016). A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay - Reduction of Ambiguous Results in ddPCR. PLOS ONE, 11(12), e0168179. doi:10.1371/journal.pone.0168179

Mayer, W., Schuller, M., Viehauser, M. C., & Hochegger, R. (2018). Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology, 245(2), 499-509. doi:10.1007/s00217-018-3182-5

Köppel, R., Ledermann, R., van Velsen, F., Ganeshan, A., & Guertler, P. (2020). Duplex digital droplet PCR for the determination of apricot kernels in marzipan. European Food Research and Technology, 246(5), 965-970. doi:10.1007/s00217-020-03463-6

Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877-882. doi:10.1038/nprot.2008.57

Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochemical and Biophysical Research Communications, 289(1), 150-154. doi:10.1006/bbrc.2001.5921

Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), 63e-63. doi:10.1093/nar/28.12.e63

Khorosheva, E. M., Karymov, M. A., Selck, D. A., & Ismagilov, R. F. (2015). Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Research, 44(2), e10-e10. doi:10.1093/nar/gkv877

Garrido-Maestu, A., Azinheiro, S., Fuciños, P., Carvalho, J., & Prado, M. (2018). Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR). Food Chemistry, 246, 156-163. doi:10.1016/j.foodchem.2017.11.005

Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2018). Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. Food Chemistry, 257, 67-74. doi:10.1016/j.foodchem.2018.02.124

Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2020). Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay. European Food Research and Technology, 246(4), 759-766. doi:10.1007/s00217-020-03440-z

Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., & O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32(1), 3-13. doi:10.1016/s0141-0229(02)00232-6

Poltronieri, P., Mezzolla, V., Primiceri, E., & Maruccio, G. (2014). Biosensors for the Detection of Food Pathogens. Foods, 3(3), 511-526. doi:10.3390/foods3030511

Thakur, M. S., & Ragavan, K. V. (2012). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641. doi:10.1007/s13197-012-0783-z

Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010

Habimana, J. de D., Ji, J., & Sun, X. (2018). Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters, 51(18), 2933-2966. doi:10.1080/00032719.2018.1458104

Yuan, D., Fang, X., Liu, Y., Kong, J., & Chen, Q. (2019). A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. The Analyst, 144(12), 3886-3891. doi:10.1039/c9an00394k

Yuan, D., Kong, J., Li, X., Fang, X., & Chen, Q. (2018). Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean. Scientific Reports, 8(1). doi:10.1038/s41598-018-26982-5

Tortajada-Genaro, L. A., Santiago-Felipe, S., Morais, S., Gabaldón, J. A., Puchades, R., & Maquieira, Á. (2011). Multiplex DNA Detection of Food Allergens on a Digital Versatile Disk. Journal of Agricultural and Food Chemistry, 60(1), 36-43. doi:10.1021/jf2037032

Badran, A. A., Morais, S., & Maquieira, Á. (2017). Simultaneous determination of four food allergens using compact disc immunoassaying technology. Analytical and Bioanalytical Chemistry, 409(9), 2261-2268. doi:10.1007/s00216-016-0170-0

Zhang, Y., Wu, Q., Wei, X., Zhang, J., & Mo, S. (2016). DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchimica Acta, 184(2), 633-639. doi:10.1007/s00604-016-2042-x

Weng, X., & Neethirajan, S. (2016). A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors and Bioelectronics, 85, 649-656. doi:10.1016/j.bios.2016.05.072

Jiang, D., Jiang, H., Ji, J., Sun, X., Qian, H., Zhang, G., & Tang, L. (2014). Mast-Cell-Based Fluorescence Biosensor for Rapid Detection of Major Fish Allergen Parvalbumin. Journal of Agricultural and Food Chemistry, 62(27), 6473-6480. doi:10.1021/jf501382t

Jauset-Rubio, M., Svobodová, M., Mairal, T., McNeil, C., Keegan, N., Saeed, A., … O´Sullivan, C. K. (2016). Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Scientific Reports, 6(1). doi:10.1038/srep37732

Ashley, J., D’Aurelio, R., Piekarska, M., Temblay, J., Pleasants, M., Trinh, L., … Tothill, I. (2018). Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors, 8(2), 32. doi:10.3390/bios8020032

Ashley, J., Piekarska, M., Segers, C., Trinh, L., Rodgers, T., Willey, R., & Tothill, I. E. (2017). An SPR based sensor for allergens detection. Biosensors and Bioelectronics, 88, 109-113. doi:10.1016/j.bios.2016.07.101

Ashley, J., Shahbazi, M.-A., Kant, K., Chidambara, V. A., Wolff, A., Bang, D. D., & Sun, Y. (2017). Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors and Bioelectronics, 91, 606-615. doi:10.1016/j.bios.2017.01.018

Zhou, J., Wang, Y., Qian, Y., Zhang, T., Zheng, L., & Fu, L. (2020). Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control, 107, 106547. doi:10.1016/j.foodcont.2019.02.041

Thevenot, D. R., Tóth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry, 71(12), 2333-2348. doi:10.1351/pac199971122333

Pereira-Barros, M. A., Barroso, M. F., Martín-Pedraza, L., Vargas, E., Benedé, S., Villalba, M., … Pingarrón, J. M. (2019). Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosensors and Bioelectronics, 137, 171-177. doi:10.1016/j.bios.2019.05.011

Angulo-Ibáñez, A., Eletxigerra, U., Lasheras, X., Campuzano, S., & Merino, S. (2019). Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta, 1079, 94-102. doi:10.1016/j.aca.2019.06.030

Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., … Lee, H. (2017). Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS Nano, 11(10), 10062-10069. doi:10.1021/acsnano.7b04318

Alves, R. C., Pimentel, F. B., Nouws, H. P. A., Marques, R. C. B., González-García, M. B., Oliveira, M. B. P. P., & Delerue-Matos, C. (2015). Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 64, 19-24. doi:10.1016/j.bios.2014.08.026

Jiang, H., Jiang, D., Zhu, P., Pi, F., Ji, J., Sun, C., … Sun, X. (2016). A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors and Bioelectronics, 83, 126-133. doi:10.1016/j.bios.2016.04.028

Jiang, D., Zhu, P., Jiang, H., Ji, J., Sun, X., Gu, W., & Zhang, G. (2015). Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors and Bioelectronics, 70, 482-490. doi:10.1016/j.bios.2015.03.058

Ng, E., Nadeau, K. C., & Wang, S. X. (2016). Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosensors and Bioelectronics, 80, 359-365. doi:10.1016/j.bios.2016.02.002

Angelopoulou, M., Petrou, P. S., Makarona, E., Haasnoot, W., Moser, I., Jobst, G., … Kakabakos, S. E. (2018). Ultrafast Multiplexed-Allergen Detection through Advanced Fluidic Design and Monolithic Interferometric Silicon Chips. Analytical Chemistry, 90(15), 9559-9567. doi:10.1021/acs.analchem.8b02321

Ito, K., Yamamoto, T., Oyama, Y., Tsuruma, R., Saito, E., Saito, Y., … Shoji, M. (2016). Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Analytical and Bioanalytical Chemistry, 408(22), 5973-5984. doi:10.1007/s00216-016-9438-7

Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., … Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240. doi:10.1016/j.fct.2015.03.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem