Mostrar el registro sencillo del ítem
dc.contributor.author | Sena-Torralba, Amadeo | es_ES |
dc.contributor.author | Pallás-Tamarit, Yeray | es_ES |
dc.contributor.author | Morais, Sergi | es_ES |
dc.contributor.author | Maquieira Catala, Angel | es_ES |
dc.date.accessioned | 2021-05-21T03:31:59Z | |
dc.date.available | 2021-05-21T03:31:59Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0165-9936 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166588 | |
dc.description.abstract | [EN] Food allergy is reported as the commonest adverse reaction to food components, whose prevalence has increased in recent years. As food avoidance is mainly in practice the only way to prevent hypersensitive consumers from ingesting allergenic substances, it is imperative to provide complete and accurate in-formation on food ingredients. In this scenario, there is a need for precise, fast and cost-effective methods for the high-throughput screening of specific allergen content in food products. This work reviews recent approaches, existing kits for food-borne allergen detection and cutting-edge applications by focusing on the sensitivity, selectivity and applicability of current methods in food samples. In addition, the advantages, benefits and limitations of each approach are discussed to establish the most suitable methods and which challenges are to be addressed in forthcoming years from an analytical viewpoint. (C) 2020 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been funded by the Agencia Estatal de Investigacion, Spain (CTQ2016-75749-R, FEDER) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | TrAC Trends in Analytical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Food-borne allergens | es_ES |
dc.subject | Bioanalytical methods | es_ES |
dc.subject | Immunoassay | es_ES |
dc.subject | Nucleic-acid detection | es_ES |
dc.subject | Biosensors | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Recent advances and challenges in food-borne allergen detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.trac.2020.116050 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-75749-R/ES/BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION EN APLICACIONES CLINICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Sena-Torralba, A.; Pallás-Tamarit, Y.; Morais, S.; Maquieira Catala, A. (2020). Recent advances and challenges in food-borne allergen detection. TrAC Trends in Analytical Chemistry. 132:1-21. https://doi.org/10.1016/j.trac.2020.116050 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.trac.2020.116050 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 132 | es_ES |
dc.relation.pasarela | S\418367 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.x | es_ES |
dc.description.references | Montalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766 | es_ES |
dc.description.references | Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010 | es_ES |
dc.description.references | Turnbull, J. L., Adams, H. N., & Gorard, D. A. (2014). Review article: the diagnosis and management of food allergy and food intolerances. Alimentary Pharmacology & Therapeutics, 41(1), 3-25. doi:10.1111/apt.12984 | es_ES |
dc.description.references | Patriarca, G., Schiavino, D., Pecora, V., Lombardo, C., Pollastrini, E., Aruanno, A., … Nucera, E. (2008). Food allergy and food intolerance: diagnosis and treatment. Internal and Emergency Medicine, 4(1), 11-24. doi:10.1007/s11739-008-0183-6 | es_ES |
dc.description.references | Morais, S., Tortajada-Genaro, L. A., Maquieira, Á., & Gonzalez Martinez, M.-Á. (2020). Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends in Analytical Chemistry, 127, 115904. doi:10.1016/j.trac.2020.115904 | es_ES |
dc.description.references | Gendel, S. M. (2012). Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology, 63(2), 279-285. doi:10.1016/j.yrtph.2012.04.007 | es_ES |
dc.description.references | Bucchini, L., Guzzon, A., Poms, R., & Senyuva, H. (2016). Analysis and critical comparison of food allergen recalls from the European Union, USA, Canada, Hong Kong, Australia and New Zealand. Food Additives & Contaminants: Part A, 33(5), 760-771. doi:10.1080/19440049.2016.1169444 | es_ES |
dc.description.references | Yin, H.-Y., Chu, P.-T., Tsai, W.-C., & Wen, H.-W. (2016). Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 192, 934-942. doi:10.1016/j.foodchem.2015.06.112 | es_ES |
dc.description.references | Flom, J. D., & Sicherer, S. H. (2019). Epidemiology of Cow’s Milk Allergy. Nutrients, 11(5), 1051. doi:10.3390/nu11051051 | es_ES |
dc.description.references | Caubet, J.-C., & Wang, J. (2011). Current Understanding of Egg Allergy. Pediatric Clinics of North America, 58(2), 427-443. doi:10.1016/j.pcl.2011.02.014 | es_ES |
dc.description.references | Lopata, A. L., Kleine-Tebbe, J., & Kamath, S. D. (2016). Allergens and molecular diagnostics of shellfish allergy. Allergo Journal International, 25(7), 210-218. doi:10.1007/s40629-016-0124-2 | es_ES |
dc.description.references | Tong, W. S., Yuen, A. W., Wai, C. Y., Leung, N. Y., Chu, K. H., & Leung, P. S. (2018). Diagnosis of fish and shellfish allergies. Journal of Asthma and Allergy, Volume 11, 247-260. doi:10.2147/jaa.s142476 | es_ES |
dc.description.references | Weinberger, T., & Sicherer, S. (2018). Current perspectives on tree nut allergy: a review. Journal of Asthma and Allergy, Volume 11, 41-51. doi:10.2147/jaa.s141636 | es_ES |
dc.description.references | Cordle, C. T. (2004). Soy Protein Allergy: Incidence and Relative Severity. The Journal of Nutrition, 134(5), 1213S-1219S. doi:10.1093/jn/134.5.1213s | es_ES |
dc.description.references | Cianferoni, A. (2016). Wheat allergy: diagnosis and management. Journal of Asthma and Allergy, 13. doi:10.2147/jaa.s81550 | es_ES |
dc.description.references | Pałgan, K., Żbikowska-Gotz, M., & Bartuzi, Z. (2018). Dangerous anaphylactic reaction to mustard. Archives of Medical Science, 14(2), 477-479. doi:10.5114/aoms.2016.60580 | es_ES |
dc.description.references | Guillamón, E., Rodríguez, J., Burbano, C., Muzquiz, M., Pedrosa, M. M., Cabanillas, B., … Cuadrado, C. (2010). Characterization of lupin major allergens (Lupinus albus L.). Molecular Nutrition & Food Research, 54(11), 1668-1676. doi:10.1002/mnfr.200900452 | es_ES |
dc.description.references | Breiteneder, H., Hoffmann-Sommergruber, K., O’Riordain, G., Susani, M., Ahorn, H., Ebner, C., … Scheiner, O. (1995). Molecular Characterization of Api g 1, the Major Allergen of Celery (Apium graveolens), and Its Immumological and Structural Relationships to a Group of 17-kDa Tree Pollen Allergens. European Journal of Biochemistry, 233(2), 484-489. doi:10.1111/j.1432-1033.1995.484_2.x | es_ES |
dc.description.references | Lipman, N. S., Jackson, L. R., Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR Journal, 46(3), 258-268. doi:10.1093/ilar.46.3.258 | es_ES |
dc.description.references | Ascoli, C. A., & Aggeler, B. (2018). Overlooked benefits of using polyclonal antibodies. BioTechniques, 65(3), 127-136. doi:10.2144/btn-2018-0065 | es_ES |
dc.description.references | Tranquet, O., Lupi, R., Echasserieau-Laporte, V., Pietri, M., Larré, C., & Denery-Papini, S. (2015). Characterization of Antibodies and Development of an Indirect Competitive Immunoassay for Detection of Deamidated Gluten. Journal of Agricultural and Food Chemistry, 63(22), 5403-5409. doi:10.1021/acs.jafc.5b00923 | es_ES |
dc.description.references | Costa, J., Ansari, P., Mafra, I., Oliveira, M. B. P. P., & Baumgartner, S. (2015). Development of a sandwich ELISA-type system for the detection and quantification of hazelnut in model chocolates. Food Chemistry, 173, 257-265. doi:10.1016/j.foodchem.2014.10.024 | es_ES |
dc.description.references | Schocker, F., Scharf, A., Kull, S., & Jappe, U. (2017). Detection of the Peanut Allergens Ara h 2 and Ara h 6 in Human Breast Milk: Development of 2 Sensitive and Specific Sandwich ELISA Assays. International Archives of Allergy and Immunology, 174(1), 17-25. doi:10.1159/000479388 | es_ES |
dc.description.references | He, S., Li, X., Gao, J., Tong, P., & Chen, H. (2017). Development of a H 2 O 2 ‐sensitive quantum dots‐based fluorescent sandwich ELISA for sensitive detection of bovine β ‐lactoglobulin by monoclonal antibody. Journal of the Science of Food and Agriculture, 98(2), 519-526. doi:10.1002/jsfa.8489 | es_ES |
dc.description.references | Castillo, D. S., & Cassola, A. (2017). Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLOS ONE, 12(7), e0182447. doi:10.1371/journal.pone.0182447 | es_ES |
dc.description.references | Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., & Ge, Y. (2011). Simultaneous Detection of Eight Food Allergens Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 59(13), 6889-6894. doi:10.1021/jf200933b | es_ES |
dc.description.references | Kim, T.-E., Park, S.-W., Cho, N.-Y., Choi, S.-Y., Yong, T.-S., Nahm, B.-H., … Noh, G. (2002). Quantitative measurement of serum allergen-specific IgE on protein chip. Experimental & Molecular Medicine, 34(2), 152-158. doi:10.1038/emm.2002.22 | es_ES |
dc.description.references | Xi, J., & Shi, Q. (2016). Development of an Indirect Competitive ELISA Kit for the Detection of Soybean Allergenic Protein Gly m Bd 28K. Food Analytical Methods, 9(11), 2998-3005. doi:10.1007/s12161-016-0493-7 | es_ES |
dc.description.references | Segura-Gil, I., Blázquez-Soro, A., Galán-Malo, P., Mata, L., Tobajas, A. P., Sánchez, L., & Pérez, M. D. (2019). Development of sandwich and competitive ELISA formats to determine β-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control, 103, 78-85. doi:10.1016/j.foodcont.2019.03.035 | es_ES |
dc.description.references | Panda, R., & Garber, E. A. E. (2019). Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Analytical and Bioanalytical Chemistry, 411(20), 5159-5174. doi:10.1007/s00216-019-01893-0 | es_ES |
dc.description.references | Sharma, G. M., Khuda, S. E., Parker, C. H., Eischeid, A. C., & Pereira, M. (2016). Detection of Allergen Markers in Food: Analytical Methods. Food Safety, 65-121. doi:10.1002/9781119160588.ch4 | es_ES |
dc.description.references | Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A., & Baumgartner, S. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 395(1), 69-81. doi:10.1007/s00216-009-2715-y | es_ES |
dc.description.references | Zheng, C., Wang, X., Lu, Y., & Liu, Y. (2012). Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control, 26(2), 446-452. doi:10.1016/j.foodcont.2012.01.040 | es_ES |
dc.description.references | MASIRI, J., BENOIT, L., MESHGI, M., DAY, J., NADALA, C., & SAMADPOUR, M. (2016). A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages. Journal of Food Protection, 79(9), 1572-1582. doi:10.4315/0362-028x.jfp-15-493 | es_ES |
dc.description.references | Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., … Baggiani, C. (2018). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 411(9), 1905-1913. doi:10.1007/s00216-018-1451-6 | es_ES |
dc.description.references | Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47-63. doi:10.1016/j.bios.2015.05.050 | es_ES |
dc.description.references | Li, J., & Macdonald, J. (2016). Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosensors and Bioelectronics, 83, 177-192. doi:10.1016/j.bios.2016.04.021 | es_ES |
dc.description.references | Bishop, J. D., Hsieh, H. V., Gasperino, D. J., & Weigl, B. H. (2019). Sensitivity enhancement in lateral flow assays: a systems perspective. Lab on a Chip, 19(15), 2486-2499. doi:10.1039/c9lc00104b | es_ES |
dc.description.references | Wang, Y., Li, Z., Lin, H., Siddanakoppalu, P. N., Zhou, J., Chen, G., & Yu, Z. (2019). Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control, 106, 106714. doi:10.1016/j.foodcont.2019.106714 | es_ES |
dc.description.references | Wu, Z., He, D., Xu, E., Jiao, A., Chughtai, M. F. J., & Jin, Z. (2018). Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chemistry, 269, 375-379. doi:10.1016/j.foodchem.2018.07.011 | es_ES |
dc.description.references | PROTEON Express - Rapid test fot detection of allergens in food and working surfaces, Zeulab. (2018). https://www.zeulab.com/products.html/allergens/111-proteon-express.html accessed June 1, 2020). | es_ES |
dc.description.references | Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., … Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219-11229. doi:10.1021/acs.jafc.9b02388 | es_ES |
dc.description.references | García-García, A., Madrid, R., González, I., García, T., & Martín, R. (2020). A novel approach to produce phage single domain antibody fragments for the detection of gluten in foods. Food Chemistry, 321, 126685. doi:10.1016/j.foodchem.2020.126685 | es_ES |
dc.description.references | Croote, D., & Quake, S. R. (2016). Food allergen detection by mass spectrometry: the role of systems biology. npj Systems Biology and Applications, 2(1). doi:10.1038/npjsba.2016.22 | es_ES |
dc.description.references | Sun, L., Lin, H., Li, Z., Sun, W., Wang, J., Wu, H., … Pavase, T. R. (2019). Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 276, 358-365. doi:10.1016/j.foodchem.2018.10.014 | es_ES |
dc.description.references | Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331, 127276. doi:10.1016/j.foodchem.2020.127276 | es_ES |
dc.description.references | Ma, X., Li, H., Zhang, J., Huang, W., Han, J., Ge, Y., … Chen, Y. (2020). Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control, 107, 106744. doi:10.1016/j.foodcont.2019.106744 | es_ES |
dc.description.references | Jira, W., & Münch, S. (2019). A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry, 275, 214-223. doi:10.1016/j.foodchem.2018.09.041 | es_ES |
dc.description.references | Monaci, L., De Angelis, E., Montemurro, N., & Pilolli, R. (2018). Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends in Analytical Chemistry, 106, 21-36. doi:10.1016/j.trac.2018.06.016 | es_ES |
dc.description.references | Bräcker, J., & Brockmeyer, J. (2018). Characterization and Detection of Food Allergens Using High-Resolution Mass Spectrometry: Current Status and Future Perspective. Journal of Agricultural and Food Chemistry, 66(34), 8935-8940. doi:10.1021/acs.jafc.8b02265 | es_ES |
dc.description.references | Marzano, V., Tilocca, B., Fiocchi, A. G., Vernocchi, P., Levi Mortera, S., Urbani, A., … Putignani, L. (2020). Perusal of food allergens analysis by mass spectrometry-based proteomics. Journal of Proteomics, 215, 103636. doi:10.1016/j.jprot.2020.103636 | es_ES |
dc.description.references | Pilolli, R., Nitride, C., Gillard, N., Huet, A.-C., van Poucke, C., de Loose, M., … Monaci, L. (2020). Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Research International, 128, 108747. doi:10.1016/j.foodres.2019.108747 | es_ES |
dc.description.references | Prado, M., Ortea, I., Vial, S., Rivas, J., Calo-Mata, P., & Barros-Velázquez, J. (2015). Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Critical Reviews in Food Science and Nutrition, 56(15), 2511-2542. doi:10.1080/10408398.2013.873767 | es_ES |
dc.description.references | Fraga, D., Meulia, T., & Fenster, S. (2008). Real‐Time PCR. Current Protocols Essential Laboratory Techniques, 00(1). doi:10.1002/9780470089941.et1003s00 | es_ES |
dc.description.references | Yoshimura, T., Kuribara, H., Kodama, T., Yamata, S., Futo, S., Watanabe, S., … Hino, A. (2005). Comparative Studies of the Quantification of Genetically Modified Organisms in Foods Processed from Maize and Soy Using Trial Producing. Journal of Agricultural and Food Chemistry, 53(6), 2060-2069. doi:10.1021/jf0483265 | es_ES |
dc.description.references | Suh, S.-M., Park, S.-B., Kim, M.-J., & Kim, H.-Y. (2019). Simultaneous detection of fruit allergen-coding genes in tomato, apple, peach and kiwi through multiplex PCR. Food Science and Biotechnology, 28(5), 1593-1598. doi:10.1007/s10068-019-00591-y | es_ES |
dc.description.references | Suh, S.-M., Kim, M.-J., Kim, H.-I., Kim, H.-J., & Kim, H.-Y. (2020). A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry, 317, 126451. doi:10.1016/j.foodchem.2020.126451 | es_ES |
dc.description.references | Mustorp, S. L., Drømtorp, S. M., & Holck, A. L. (2011). Multiplex, Quantitative, Ligation-Dependent Probe Amplification for Determination of Allergens in Food. Journal of Agricultural and Food Chemistry, 59(10), 5231-5239. doi:10.1021/jf200545j | es_ES |
dc.description.references | Cheng, F., Wu, J., Zhang, J., Pan, A., Quan, S., Zhang, D., … Yang, L. (2016). Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chemistry, 199, 799-808. doi:10.1016/j.foodchem.2015.12.058 | es_ES |
dc.description.references | Schouten, J. P. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), 57e-57. doi:10.1093/nar/gnf056 | es_ES |
dc.description.references | López-Calleja, I. M., García, A., Madrid, R., García, T., Martín, R., & González, I. (2017). Multiplex ligation-dependent probe amplification (MLPA) for simultaneous detection of DNA from sunflower, poppy, flaxseed, sesame and soy allergenic ingredients in commercial food products. Food Control, 71, 301-310. doi:10.1016/j.foodcont.2016.06.014 | es_ES |
dc.description.references | Costa, J., Amaral, J. S., Grazina, L., Oliveira, M. B. P. P., & Mafra, I. (2017). Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, 221, 1843-1850. doi:10.1016/j.foodchem.2016.10.091 | es_ES |
dc.description.references | Puente-Lelievre, C., & Eischeid, A. C. (2018). Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. Journal of Agricultural and Food Chemistry, 66(32), 8623-8629. doi:10.1021/acs.jafc.8b02053 | es_ES |
dc.description.references | Garino, C., De Paolis, A., Coïsson, J. D., Bianchi, D. M., Decastelli, L., & Arlorio, M. (2016). Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chemistry, 194, 980-985. doi:10.1016/j.foodchem.2015.08.114 | es_ES |
dc.description.references | Xiao, G., Qin, C., Wenju, Z., & Qin, C. (2016). Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food. Journal of Dairy Science, 99(3), 1716-1724. doi:10.3168/jds.2015-10255 | es_ES |
dc.description.references | Druml, B., & Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 158, 245-254. doi:10.1016/j.foodchem.2014.02.111 | es_ES |
dc.description.references | Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019 | es_ES |
dc.description.references | Ding, Y., Jiang, G., Huang, L., Chen, C., Sun, J., & Zhu, C. (2020). DNA barcoding coupled with high‐resolution melting analysis for nut species and walnut milk beverage authentication. Journal of the Science of Food and Agriculture, 100(6), 2372-2379. doi:10.1002/jsfa.10241 | es_ES |
dc.description.references | Fernandes, T. J. R., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2017). DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chemistry, 230, 49-57. doi:10.1016/j.foodchem.2017.03.015 | es_ES |
dc.description.references | Pereira, L., Gomes, S., Barrias, S., Fernandes, J. R., & Martins-Lopes, P. (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International, 103, 170-181. doi:10.1016/j.foodres.2017.10.026 | es_ES |
dc.description.references | Martín-Fernández, B., Costa, J., de-los-Santos-Álvarez, N., López-Ruiz, B., Oliveira, M. B. P. P., & Mafra, I. (2016). High resolution melting analysis as a new approach to discriminate gluten-containing cereals. Food Chemistry, 211, 383-391. doi:10.1016/j.foodchem.2016.05.067 | es_ES |
dc.description.references | Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., … Colston, B. W. (2011). High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Analytical Chemistry, 83(22), 8604-8610. doi:10.1021/ac202028g | es_ES |
dc.description.references | Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., … Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003-1005. doi:10.1038/nmeth.2633 | es_ES |
dc.description.references | Deprez, L., Corbisier, P., Kortekaas, A.-M., Mazoua, S., Beaz Hidalgo, R., Trapmann, S., & Emons, H. (2016). Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomolecular Detection and Quantification, 9, 29-39. doi:10.1016/j.bdq.2016.08.002 | es_ES |
dc.description.references | Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., & Pan, L. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS ONE, 12(8), e0181949. doi:10.1371/journal.pone.0181949 | es_ES |
dc.description.references | Witte, A. K., Mester, P., Fister, S., Witte, M., Schoder, D., & Rossmanith, P. (2016). A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay - Reduction of Ambiguous Results in ddPCR. PLOS ONE, 11(12), e0168179. doi:10.1371/journal.pone.0168179 | es_ES |
dc.description.references | Mayer, W., Schuller, M., Viehauser, M. C., & Hochegger, R. (2018). Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology, 245(2), 499-509. doi:10.1007/s00217-018-3182-5 | es_ES |
dc.description.references | Köppel, R., Ledermann, R., van Velsen, F., Ganeshan, A., & Guertler, P. (2020). Duplex digital droplet PCR for the determination of apricot kernels in marzipan. European Food Research and Technology, 246(5), 965-970. doi:10.1007/s00217-020-03463-6 | es_ES |
dc.description.references | Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877-882. doi:10.1038/nprot.2008.57 | es_ES |
dc.description.references | Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochemical and Biophysical Research Communications, 289(1), 150-154. doi:10.1006/bbrc.2001.5921 | es_ES |
dc.description.references | Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), 63e-63. doi:10.1093/nar/28.12.e63 | es_ES |
dc.description.references | Khorosheva, E. M., Karymov, M. A., Selck, D. A., & Ismagilov, R. F. (2015). Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Research, 44(2), e10-e10. doi:10.1093/nar/gkv877 | es_ES |
dc.description.references | Garrido-Maestu, A., Azinheiro, S., Fuciños, P., Carvalho, J., & Prado, M. (2018). Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR). Food Chemistry, 246, 156-163. doi:10.1016/j.foodchem.2017.11.005 | es_ES |
dc.description.references | Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2018). Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. Food Chemistry, 257, 67-74. doi:10.1016/j.foodchem.2018.02.124 | es_ES |
dc.description.references | Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2020). Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay. European Food Research and Technology, 246(4), 759-766. doi:10.1007/s00217-020-03440-z | es_ES |
dc.description.references | Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., & O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32(1), 3-13. doi:10.1016/s0141-0229(02)00232-6 | es_ES |
dc.description.references | Poltronieri, P., Mezzolla, V., Primiceri, E., & Maruccio, G. (2014). Biosensors for the Detection of Food Pathogens. Foods, 3(3), 511-526. doi:10.3390/foods3030511 | es_ES |
dc.description.references | Thakur, M. S., & Ragavan, K. V. (2012). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641. doi:10.1007/s13197-012-0783-z | es_ES |
dc.description.references | Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010 | es_ES |
dc.description.references | Habimana, J. de D., Ji, J., & Sun, X. (2018). Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters, 51(18), 2933-2966. doi:10.1080/00032719.2018.1458104 | es_ES |
dc.description.references | Yuan, D., Fang, X., Liu, Y., Kong, J., & Chen, Q. (2019). A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. The Analyst, 144(12), 3886-3891. doi:10.1039/c9an00394k | es_ES |
dc.description.references | Yuan, D., Kong, J., Li, X., Fang, X., & Chen, Q. (2018). Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean. Scientific Reports, 8(1). doi:10.1038/s41598-018-26982-5 | es_ES |
dc.description.references | Tortajada-Genaro, L. A., Santiago-Felipe, S., Morais, S., Gabaldón, J. A., Puchades, R., & Maquieira, Á. (2011). Multiplex DNA Detection of Food Allergens on a Digital Versatile Disk. Journal of Agricultural and Food Chemistry, 60(1), 36-43. doi:10.1021/jf2037032 | es_ES |
dc.description.references | Badran, A. A., Morais, S., & Maquieira, Á. (2017). Simultaneous determination of four food allergens using compact disc immunoassaying technology. Analytical and Bioanalytical Chemistry, 409(9), 2261-2268. doi:10.1007/s00216-016-0170-0 | es_ES |
dc.description.references | Zhang, Y., Wu, Q., Wei, X., Zhang, J., & Mo, S. (2016). DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchimica Acta, 184(2), 633-639. doi:10.1007/s00604-016-2042-x | es_ES |
dc.description.references | Weng, X., & Neethirajan, S. (2016). A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors and Bioelectronics, 85, 649-656. doi:10.1016/j.bios.2016.05.072 | es_ES |
dc.description.references | Jiang, D., Jiang, H., Ji, J., Sun, X., Qian, H., Zhang, G., & Tang, L. (2014). Mast-Cell-Based Fluorescence Biosensor for Rapid Detection of Major Fish Allergen Parvalbumin. Journal of Agricultural and Food Chemistry, 62(27), 6473-6480. doi:10.1021/jf501382t | es_ES |
dc.description.references | Jauset-Rubio, M., Svobodová, M., Mairal, T., McNeil, C., Keegan, N., Saeed, A., … O´Sullivan, C. K. (2016). Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Scientific Reports, 6(1). doi:10.1038/srep37732 | es_ES |
dc.description.references | Ashley, J., D’Aurelio, R., Piekarska, M., Temblay, J., Pleasants, M., Trinh, L., … Tothill, I. (2018). Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors, 8(2), 32. doi:10.3390/bios8020032 | es_ES |
dc.description.references | Ashley, J., Piekarska, M., Segers, C., Trinh, L., Rodgers, T., Willey, R., & Tothill, I. E. (2017). An SPR based sensor for allergens detection. Biosensors and Bioelectronics, 88, 109-113. doi:10.1016/j.bios.2016.07.101 | es_ES |
dc.description.references | Ashley, J., Shahbazi, M.-A., Kant, K., Chidambara, V. A., Wolff, A., Bang, D. D., & Sun, Y. (2017). Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors and Bioelectronics, 91, 606-615. doi:10.1016/j.bios.2017.01.018 | es_ES |
dc.description.references | Zhou, J., Wang, Y., Qian, Y., Zhang, T., Zheng, L., & Fu, L. (2020). Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control, 107, 106547. doi:10.1016/j.foodcont.2019.02.041 | es_ES |
dc.description.references | Thevenot, D. R., Tóth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry, 71(12), 2333-2348. doi:10.1351/pac199971122333 | es_ES |
dc.description.references | Pereira-Barros, M. A., Barroso, M. F., Martín-Pedraza, L., Vargas, E., Benedé, S., Villalba, M., … Pingarrón, J. M. (2019). Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosensors and Bioelectronics, 137, 171-177. doi:10.1016/j.bios.2019.05.011 | es_ES |
dc.description.references | Angulo-Ibáñez, A., Eletxigerra, U., Lasheras, X., Campuzano, S., & Merino, S. (2019). Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta, 1079, 94-102. doi:10.1016/j.aca.2019.06.030 | es_ES |
dc.description.references | Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., … Lee, H. (2017). Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS Nano, 11(10), 10062-10069. doi:10.1021/acsnano.7b04318 | es_ES |
dc.description.references | Alves, R. C., Pimentel, F. B., Nouws, H. P. A., Marques, R. C. B., González-García, M. B., Oliveira, M. B. P. P., & Delerue-Matos, C. (2015). Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 64, 19-24. doi:10.1016/j.bios.2014.08.026 | es_ES |
dc.description.references | Jiang, H., Jiang, D., Zhu, P., Pi, F., Ji, J., Sun, C., … Sun, X. (2016). A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors and Bioelectronics, 83, 126-133. doi:10.1016/j.bios.2016.04.028 | es_ES |
dc.description.references | Jiang, D., Zhu, P., Jiang, H., Ji, J., Sun, X., Gu, W., & Zhang, G. (2015). Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors and Bioelectronics, 70, 482-490. doi:10.1016/j.bios.2015.03.058 | es_ES |
dc.description.references | Ng, E., Nadeau, K. C., & Wang, S. X. (2016). Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosensors and Bioelectronics, 80, 359-365. doi:10.1016/j.bios.2016.02.002 | es_ES |
dc.description.references | Angelopoulou, M., Petrou, P. S., Makarona, E., Haasnoot, W., Moser, I., Jobst, G., … Kakabakos, S. E. (2018). Ultrafast Multiplexed-Allergen Detection through Advanced Fluidic Design and Monolithic Interferometric Silicon Chips. Analytical Chemistry, 90(15), 9559-9567. doi:10.1021/acs.analchem.8b02321 | es_ES |
dc.description.references | Ito, K., Yamamoto, T., Oyama, Y., Tsuruma, R., Saito, E., Saito, Y., … Shoji, M. (2016). Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Analytical and Bioanalytical Chemistry, 408(22), 5973-5984. doi:10.1007/s00216-016-9438-7 | es_ES |
dc.description.references | Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., … Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240. doi:10.1016/j.fct.2015.03.005 | es_ES |