- -

Recent advances and challenges in food-borne allergen detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent advances and challenges in food-borne allergen detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sena-Torralba, Amadeo es_ES
dc.contributor.author Pallás-Tamarit, Yeray es_ES
dc.contributor.author Morais, Sergi es_ES
dc.contributor.author Maquieira Catala, Angel es_ES
dc.date.accessioned 2021-05-21T03:31:59Z
dc.date.available 2021-05-21T03:31:59Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0165-9936 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166588
dc.description.abstract [EN] Food allergy is reported as the commonest adverse reaction to food components, whose prevalence has increased in recent years. As food avoidance is mainly in practice the only way to prevent hypersensitive consumers from ingesting allergenic substances, it is imperative to provide complete and accurate in-formation on food ingredients. In this scenario, there is a need for precise, fast and cost-effective methods for the high-throughput screening of specific allergen content in food products. This work reviews recent approaches, existing kits for food-borne allergen detection and cutting-edge applications by focusing on the sensitivity, selectivity and applicability of current methods in food samples. In addition, the advantages, benefits and limitations of each approach are discussed to establish the most suitable methods and which challenges are to be addressed in forthcoming years from an analytical viewpoint. (C) 2020 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been funded by the Agencia Estatal de Investigacion, Spain (CTQ2016-75749-R, FEDER) es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof TrAC Trends in Analytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Food-borne allergens es_ES
dc.subject Bioanalytical methods es_ES
dc.subject Immunoassay es_ES
dc.subject Nucleic-acid detection es_ES
dc.subject Biosensors es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Recent advances and challenges in food-borne allergen detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.trac.2020.116050 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-75749-R/ES/BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION EN APLICACIONES CLINICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Sena-Torralba, A.; Pallás-Tamarit, Y.; Morais, S.; Maquieira Catala, A. (2020). Recent advances and challenges in food-borne allergen detection. TrAC Trends in Analytical Chemistry. 132:1-21. https://doi.org/10.1016/j.trac.2020.116050 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.trac.2020.116050 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 132 es_ES
dc.relation.pasarela S\418367 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.x es_ES
dc.description.references Montalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766 es_ES
dc.description.references Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010 es_ES
dc.description.references Turnbull, J. L., Adams, H. N., & Gorard, D. A. (2014). Review article: the diagnosis and management of food allergy and food intolerances. Alimentary Pharmacology & Therapeutics, 41(1), 3-25. doi:10.1111/apt.12984 es_ES
dc.description.references Patriarca, G., Schiavino, D., Pecora, V., Lombardo, C., Pollastrini, E., Aruanno, A., … Nucera, E. (2008). Food allergy and food intolerance: diagnosis and treatment. Internal and Emergency Medicine, 4(1), 11-24. doi:10.1007/s11739-008-0183-6 es_ES
dc.description.references Morais, S., Tortajada-Genaro, L. A., Maquieira, Á., & Gonzalez Martinez, M.-Á. (2020). Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends in Analytical Chemistry, 127, 115904. doi:10.1016/j.trac.2020.115904 es_ES
dc.description.references Gendel, S. M. (2012). Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology, 63(2), 279-285. doi:10.1016/j.yrtph.2012.04.007 es_ES
dc.description.references Bucchini, L., Guzzon, A., Poms, R., & Senyuva, H. (2016). Analysis and critical comparison of food allergen recalls from the European Union, USA, Canada, Hong Kong, Australia and New Zealand. Food Additives & Contaminants: Part A, 33(5), 760-771. doi:10.1080/19440049.2016.1169444 es_ES
dc.description.references Yin, H.-Y., Chu, P.-T., Tsai, W.-C., & Wen, H.-W. (2016). Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 192, 934-942. doi:10.1016/j.foodchem.2015.06.112 es_ES
dc.description.references Flom, J. D., & Sicherer, S. H. (2019). Epidemiology of Cow’s Milk Allergy. Nutrients, 11(5), 1051. doi:10.3390/nu11051051 es_ES
dc.description.references Caubet, J.-C., & Wang, J. (2011). Current Understanding of Egg Allergy. Pediatric Clinics of North America, 58(2), 427-443. doi:10.1016/j.pcl.2011.02.014 es_ES
dc.description.references Lopata, A. L., Kleine-Tebbe, J., & Kamath, S. D. (2016). Allergens and molecular diagnostics of shellfish allergy. Allergo Journal International, 25(7), 210-218. doi:10.1007/s40629-016-0124-2 es_ES
dc.description.references Tong, W. S., Yuen, A. W., Wai, C. Y., Leung, N. Y., Chu, K. H., & Leung, P. S. (2018). Diagnosis of fish and shellfish allergies. Journal of Asthma and Allergy, Volume 11, 247-260. doi:10.2147/jaa.s142476 es_ES
dc.description.references Weinberger, T., & Sicherer, S. (2018). Current perspectives on tree nut allergy: a review. Journal of Asthma and Allergy, Volume 11, 41-51. doi:10.2147/jaa.s141636 es_ES
dc.description.references Cordle, C. T. (2004). Soy Protein Allergy: Incidence and Relative Severity. The Journal of Nutrition, 134(5), 1213S-1219S. doi:10.1093/jn/134.5.1213s es_ES
dc.description.references Cianferoni, A. (2016). Wheat allergy: diagnosis and management. Journal of Asthma and Allergy, 13. doi:10.2147/jaa.s81550 es_ES
dc.description.references Pałgan, K., Żbikowska-Gotz, M., & Bartuzi, Z. (2018). Dangerous anaphylactic reaction to mustard. Archives of Medical Science, 14(2), 477-479. doi:10.5114/aoms.2016.60580 es_ES
dc.description.references Guillamón, E., Rodríguez, J., Burbano, C., Muzquiz, M., Pedrosa, M. M., Cabanillas, B., … Cuadrado, C. (2010). Characterization of lupin major allergens (Lupinus albus L.). Molecular Nutrition & Food Research, 54(11), 1668-1676. doi:10.1002/mnfr.200900452 es_ES
dc.description.references Breiteneder, H., Hoffmann-Sommergruber, K., O’Riordain, G., Susani, M., Ahorn, H., Ebner, C., … Scheiner, O. (1995). Molecular Characterization of Api g 1, the Major Allergen of Celery (Apium graveolens), and Its Immumological and Structural Relationships to a Group of 17-kDa Tree Pollen Allergens. European Journal of Biochemistry, 233(2), 484-489. doi:10.1111/j.1432-1033.1995.484_2.x es_ES
dc.description.references Lipman, N. S., Jackson, L. R., Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR Journal, 46(3), 258-268. doi:10.1093/ilar.46.3.258 es_ES
dc.description.references Ascoli, C. A., & Aggeler, B. (2018). Overlooked benefits of using polyclonal antibodies. BioTechniques, 65(3), 127-136. doi:10.2144/btn-2018-0065 es_ES
dc.description.references Tranquet, O., Lupi, R., Echasserieau-Laporte, V., Pietri, M., Larré, C., & Denery-Papini, S. (2015). Characterization of Antibodies and Development of an Indirect Competitive Immunoassay for Detection of Deamidated Gluten. Journal of Agricultural and Food Chemistry, 63(22), 5403-5409. doi:10.1021/acs.jafc.5b00923 es_ES
dc.description.references Costa, J., Ansari, P., Mafra, I., Oliveira, M. B. P. P., & Baumgartner, S. (2015). Development of a sandwich ELISA-type system for the detection and quantification of hazelnut in model chocolates. Food Chemistry, 173, 257-265. doi:10.1016/j.foodchem.2014.10.024 es_ES
dc.description.references Schocker, F., Scharf, A., Kull, S., & Jappe, U. (2017). Detection of the Peanut Allergens Ara h 2 and Ara h 6 in Human Breast Milk: Development of 2 Sensitive and Specific Sandwich ELISA Assays. International Archives of Allergy and Immunology, 174(1), 17-25. doi:10.1159/000479388 es_ES
dc.description.references He, S., Li, X., Gao, J., Tong, P., & Chen, H. (2017). Development of a H 2 O 2 ‐sensitive quantum dots‐based fluorescent sandwich ELISA for sensitive detection of bovine β ‐lactoglobulin by monoclonal antibody. Journal of the Science of Food and Agriculture, 98(2), 519-526. doi:10.1002/jsfa.8489 es_ES
dc.description.references Castillo, D. S., & Cassola, A. (2017). Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLOS ONE, 12(7), e0182447. doi:10.1371/journal.pone.0182447 es_ES
dc.description.references Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., & Ge, Y. (2011). Simultaneous Detection of Eight Food Allergens Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 59(13), 6889-6894. doi:10.1021/jf200933b es_ES
dc.description.references Kim, T.-E., Park, S.-W., Cho, N.-Y., Choi, S.-Y., Yong, T.-S., Nahm, B.-H., … Noh, G. (2002). Quantitative measurement of serum allergen-specific IgE on protein chip. Experimental & Molecular Medicine, 34(2), 152-158. doi:10.1038/emm.2002.22 es_ES
dc.description.references Xi, J., & Shi, Q. (2016). Development of an Indirect Competitive ELISA Kit for the Detection of Soybean Allergenic Protein Gly m Bd 28K. Food Analytical Methods, 9(11), 2998-3005. doi:10.1007/s12161-016-0493-7 es_ES
dc.description.references Segura-Gil, I., Blázquez-Soro, A., Galán-Malo, P., Mata, L., Tobajas, A. P., Sánchez, L., & Pérez, M. D. (2019). Development of sandwich and competitive ELISA formats to determine β-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control, 103, 78-85. doi:10.1016/j.foodcont.2019.03.035 es_ES
dc.description.references Panda, R., & Garber, E. A. E. (2019). Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Analytical and Bioanalytical Chemistry, 411(20), 5159-5174. doi:10.1007/s00216-019-01893-0 es_ES
dc.description.references Sharma, G. M., Khuda, S. E., Parker, C. H., Eischeid, A. C., & Pereira, M. (2016). Detection of Allergen Markers in Food: Analytical Methods. Food Safety, 65-121. doi:10.1002/9781119160588.ch4 es_ES
dc.description.references Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A., & Baumgartner, S. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 395(1), 69-81. doi:10.1007/s00216-009-2715-y es_ES
dc.description.references Zheng, C., Wang, X., Lu, Y., & Liu, Y. (2012). Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control, 26(2), 446-452. doi:10.1016/j.foodcont.2012.01.040 es_ES
dc.description.references MASIRI, J., BENOIT, L., MESHGI, M., DAY, J., NADALA, C., & SAMADPOUR, M. (2016). A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages. Journal of Food Protection, 79(9), 1572-1582. doi:10.4315/0362-028x.jfp-15-493 es_ES
dc.description.references Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., … Baggiani, C. (2018). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 411(9), 1905-1913. doi:10.1007/s00216-018-1451-6 es_ES
dc.description.references Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47-63. doi:10.1016/j.bios.2015.05.050 es_ES
dc.description.references Li, J., & Macdonald, J. (2016). Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosensors and Bioelectronics, 83, 177-192. doi:10.1016/j.bios.2016.04.021 es_ES
dc.description.references Bishop, J. D., Hsieh, H. V., Gasperino, D. J., & Weigl, B. H. (2019). Sensitivity enhancement in lateral flow assays: a systems perspective. Lab on a Chip, 19(15), 2486-2499. doi:10.1039/c9lc00104b es_ES
dc.description.references Wang, Y., Li, Z., Lin, H., Siddanakoppalu, P. N., Zhou, J., Chen, G., & Yu, Z. (2019). Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control, 106, 106714. doi:10.1016/j.foodcont.2019.106714 es_ES
dc.description.references Wu, Z., He, D., Xu, E., Jiao, A., Chughtai, M. F. J., & Jin, Z. (2018). Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chemistry, 269, 375-379. doi:10.1016/j.foodchem.2018.07.011 es_ES
dc.description.references PROTEON Express - Rapid test fot detection of allergens in food and working surfaces, Zeulab. (2018). https://www.zeulab.com/products.html/allergens/111-proteon-express.html accessed June 1, 2020). es_ES
dc.description.references Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., … Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219-11229. doi:10.1021/acs.jafc.9b02388 es_ES
dc.description.references García-García, A., Madrid, R., González, I., García, T., & Martín, R. (2020). A novel approach to produce phage single domain antibody fragments for the detection of gluten in foods. Food Chemistry, 321, 126685. doi:10.1016/j.foodchem.2020.126685 es_ES
dc.description.references Croote, D., & Quake, S. R. (2016). Food allergen detection by mass spectrometry: the role of systems biology. npj Systems Biology and Applications, 2(1). doi:10.1038/npjsba.2016.22 es_ES
dc.description.references Sun, L., Lin, H., Li, Z., Sun, W., Wang, J., Wu, H., … Pavase, T. R. (2019). Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 276, 358-365. doi:10.1016/j.foodchem.2018.10.014 es_ES
dc.description.references Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331, 127276. doi:10.1016/j.foodchem.2020.127276 es_ES
dc.description.references Ma, X., Li, H., Zhang, J., Huang, W., Han, J., Ge, Y., … Chen, Y. (2020). Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control, 107, 106744. doi:10.1016/j.foodcont.2019.106744 es_ES
dc.description.references Jira, W., & Münch, S. (2019). A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry, 275, 214-223. doi:10.1016/j.foodchem.2018.09.041 es_ES
dc.description.references Monaci, L., De Angelis, E., Montemurro, N., & Pilolli, R. (2018). Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends in Analytical Chemistry, 106, 21-36. doi:10.1016/j.trac.2018.06.016 es_ES
dc.description.references Bräcker, J., & Brockmeyer, J. (2018). Characterization and Detection of Food Allergens Using High-Resolution Mass Spectrometry: Current Status and Future Perspective. Journal of Agricultural and Food Chemistry, 66(34), 8935-8940. doi:10.1021/acs.jafc.8b02265 es_ES
dc.description.references Marzano, V., Tilocca, B., Fiocchi, A. G., Vernocchi, P., Levi Mortera, S., Urbani, A., … Putignani, L. (2020). Perusal of food allergens analysis by mass spectrometry-based proteomics. Journal of Proteomics, 215, 103636. doi:10.1016/j.jprot.2020.103636 es_ES
dc.description.references Pilolli, R., Nitride, C., Gillard, N., Huet, A.-C., van Poucke, C., de Loose, M., … Monaci, L. (2020). Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Research International, 128, 108747. doi:10.1016/j.foodres.2019.108747 es_ES
dc.description.references Prado, M., Ortea, I., Vial, S., Rivas, J., Calo-Mata, P., & Barros-Velázquez, J. (2015). Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Critical Reviews in Food Science and Nutrition, 56(15), 2511-2542. doi:10.1080/10408398.2013.873767 es_ES
dc.description.references Fraga, D., Meulia, T., & Fenster, S. (2008). Real‐Time PCR. Current Protocols Essential Laboratory Techniques, 00(1). doi:10.1002/9780470089941.et1003s00 es_ES
dc.description.references Yoshimura, T., Kuribara, H., Kodama, T., Yamata, S., Futo, S., Watanabe, S., … Hino, A. (2005). Comparative Studies of the Quantification of Genetically Modified Organisms in Foods Processed from Maize and Soy Using Trial Producing. Journal of Agricultural and Food Chemistry, 53(6), 2060-2069. doi:10.1021/jf0483265 es_ES
dc.description.references Suh, S.-M., Park, S.-B., Kim, M.-J., & Kim, H.-Y. (2019). Simultaneous detection of fruit allergen-coding genes in tomato, apple, peach and kiwi through multiplex PCR. Food Science and Biotechnology, 28(5), 1593-1598. doi:10.1007/s10068-019-00591-y es_ES
dc.description.references Suh, S.-M., Kim, M.-J., Kim, H.-I., Kim, H.-J., & Kim, H.-Y. (2020). A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry, 317, 126451. doi:10.1016/j.foodchem.2020.126451 es_ES
dc.description.references Mustorp, S. L., Drømtorp, S. M., & Holck, A. L. (2011). Multiplex, Quantitative, Ligation-Dependent Probe Amplification for Determination of Allergens in Food. Journal of Agricultural and Food Chemistry, 59(10), 5231-5239. doi:10.1021/jf200545j es_ES
dc.description.references Cheng, F., Wu, J., Zhang, J., Pan, A., Quan, S., Zhang, D., … Yang, L. (2016). Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chemistry, 199, 799-808. doi:10.1016/j.foodchem.2015.12.058 es_ES
dc.description.references Schouten, J. P. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), 57e-57. doi:10.1093/nar/gnf056 es_ES
dc.description.references López-Calleja, I. M., García, A., Madrid, R., García, T., Martín, R., & González, I. (2017). Multiplex ligation-dependent probe amplification (MLPA) for simultaneous detection of DNA from sunflower, poppy, flaxseed, sesame and soy allergenic ingredients in commercial food products. Food Control, 71, 301-310. doi:10.1016/j.foodcont.2016.06.014 es_ES
dc.description.references Costa, J., Amaral, J. S., Grazina, L., Oliveira, M. B. P. P., & Mafra, I. (2017). Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, 221, 1843-1850. doi:10.1016/j.foodchem.2016.10.091 es_ES
dc.description.references Puente-Lelievre, C., & Eischeid, A. C. (2018). Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. Journal of Agricultural and Food Chemistry, 66(32), 8623-8629. doi:10.1021/acs.jafc.8b02053 es_ES
dc.description.references Garino, C., De Paolis, A., Coïsson, J. D., Bianchi, D. M., Decastelli, L., & Arlorio, M. (2016). Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chemistry, 194, 980-985. doi:10.1016/j.foodchem.2015.08.114 es_ES
dc.description.references Xiao, G., Qin, C., Wenju, Z., & Qin, C. (2016). Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food. Journal of Dairy Science, 99(3), 1716-1724. doi:10.3168/jds.2015-10255 es_ES
dc.description.references Druml, B., & Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 158, 245-254. doi:10.1016/j.foodchem.2014.02.111 es_ES
dc.description.references Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019 es_ES
dc.description.references Ding, Y., Jiang, G., Huang, L., Chen, C., Sun, J., & Zhu, C. (2020). DNA barcoding coupled with high‐resolution melting analysis for nut species and walnut milk beverage authentication. Journal of the Science of Food and Agriculture, 100(6), 2372-2379. doi:10.1002/jsfa.10241 es_ES
dc.description.references Fernandes, T. J. R., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2017). DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chemistry, 230, 49-57. doi:10.1016/j.foodchem.2017.03.015 es_ES
dc.description.references Pereira, L., Gomes, S., Barrias, S., Fernandes, J. R., & Martins-Lopes, P. (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International, 103, 170-181. doi:10.1016/j.foodres.2017.10.026 es_ES
dc.description.references Martín-Fernández, B., Costa, J., de-los-Santos-Álvarez, N., López-Ruiz, B., Oliveira, M. B. P. P., & Mafra, I. (2016). High resolution melting analysis as a new approach to discriminate gluten-containing cereals. Food Chemistry, 211, 383-391. doi:10.1016/j.foodchem.2016.05.067 es_ES
dc.description.references Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., … Colston, B. W. (2011). High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Analytical Chemistry, 83(22), 8604-8610. doi:10.1021/ac202028g es_ES
dc.description.references Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., … Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003-1005. doi:10.1038/nmeth.2633 es_ES
dc.description.references Deprez, L., Corbisier, P., Kortekaas, A.-M., Mazoua, S., Beaz Hidalgo, R., Trapmann, S., & Emons, H. (2016). Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomolecular Detection and Quantification, 9, 29-39. doi:10.1016/j.bdq.2016.08.002 es_ES
dc.description.references Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., & Pan, L. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS ONE, 12(8), e0181949. doi:10.1371/journal.pone.0181949 es_ES
dc.description.references Witte, A. K., Mester, P., Fister, S., Witte, M., Schoder, D., & Rossmanith, P. (2016). A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay - Reduction of Ambiguous Results in ddPCR. PLOS ONE, 11(12), e0168179. doi:10.1371/journal.pone.0168179 es_ES
dc.description.references Mayer, W., Schuller, M., Viehauser, M. C., & Hochegger, R. (2018). Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology, 245(2), 499-509. doi:10.1007/s00217-018-3182-5 es_ES
dc.description.references Köppel, R., Ledermann, R., van Velsen, F., Ganeshan, A., & Guertler, P. (2020). Duplex digital droplet PCR for the determination of apricot kernels in marzipan. European Food Research and Technology, 246(5), 965-970. doi:10.1007/s00217-020-03463-6 es_ES
dc.description.references Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877-882. doi:10.1038/nprot.2008.57 es_ES
dc.description.references Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochemical and Biophysical Research Communications, 289(1), 150-154. doi:10.1006/bbrc.2001.5921 es_ES
dc.description.references Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), 63e-63. doi:10.1093/nar/28.12.e63 es_ES
dc.description.references Khorosheva, E. M., Karymov, M. A., Selck, D. A., & Ismagilov, R. F. (2015). Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Research, 44(2), e10-e10. doi:10.1093/nar/gkv877 es_ES
dc.description.references Garrido-Maestu, A., Azinheiro, S., Fuciños, P., Carvalho, J., & Prado, M. (2018). Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR). Food Chemistry, 246, 156-163. doi:10.1016/j.foodchem.2017.11.005 es_ES
dc.description.references Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2018). Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. Food Chemistry, 257, 67-74. doi:10.1016/j.foodchem.2018.02.124 es_ES
dc.description.references Sheu, S.-C., Tsou, P.-C., Lien, Y.-Y., & Lee, M.-S. (2020). Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay. European Food Research and Technology, 246(4), 759-766. doi:10.1007/s00217-020-03440-z es_ES
dc.description.references Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., & O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32(1), 3-13. doi:10.1016/s0141-0229(02)00232-6 es_ES
dc.description.references Poltronieri, P., Mezzolla, V., Primiceri, E., & Maruccio, G. (2014). Biosensors for the Detection of Food Pathogens. Foods, 3(3), 511-526. doi:10.3390/foods3030511 es_ES
dc.description.references Thakur, M. S., & Ragavan, K. V. (2012). Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625-641. doi:10.1007/s13197-012-0783-z es_ES
dc.description.references Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010 es_ES
dc.description.references Habimana, J. de D., Ji, J., & Sun, X. (2018). Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters, 51(18), 2933-2966. doi:10.1080/00032719.2018.1458104 es_ES
dc.description.references Yuan, D., Fang, X., Liu, Y., Kong, J., & Chen, Q. (2019). A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. The Analyst, 144(12), 3886-3891. doi:10.1039/c9an00394k es_ES
dc.description.references Yuan, D., Kong, J., Li, X., Fang, X., & Chen, Q. (2018). Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean. Scientific Reports, 8(1). doi:10.1038/s41598-018-26982-5 es_ES
dc.description.references Tortajada-Genaro, L. A., Santiago-Felipe, S., Morais, S., Gabaldón, J. A., Puchades, R., & Maquieira, Á. (2011). Multiplex DNA Detection of Food Allergens on a Digital Versatile Disk. Journal of Agricultural and Food Chemistry, 60(1), 36-43. doi:10.1021/jf2037032 es_ES
dc.description.references Badran, A. A., Morais, S., & Maquieira, Á. (2017). Simultaneous determination of four food allergens using compact disc immunoassaying technology. Analytical and Bioanalytical Chemistry, 409(9), 2261-2268. doi:10.1007/s00216-016-0170-0 es_ES
dc.description.references Zhang, Y., Wu, Q., Wei, X., Zhang, J., & Mo, S. (2016). DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchimica Acta, 184(2), 633-639. doi:10.1007/s00604-016-2042-x es_ES
dc.description.references Weng, X., & Neethirajan, S. (2016). A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors and Bioelectronics, 85, 649-656. doi:10.1016/j.bios.2016.05.072 es_ES
dc.description.references Jiang, D., Jiang, H., Ji, J., Sun, X., Qian, H., Zhang, G., & Tang, L. (2014). Mast-Cell-Based Fluorescence Biosensor for Rapid Detection of Major Fish Allergen Parvalbumin. Journal of Agricultural and Food Chemistry, 62(27), 6473-6480. doi:10.1021/jf501382t es_ES
dc.description.references Jauset-Rubio, M., Svobodová, M., Mairal, T., McNeil, C., Keegan, N., Saeed, A., … O´Sullivan, C. K. (2016). Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Scientific Reports, 6(1). doi:10.1038/srep37732 es_ES
dc.description.references Ashley, J., D’Aurelio, R., Piekarska, M., Temblay, J., Pleasants, M., Trinh, L., … Tothill, I. (2018). Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors, 8(2), 32. doi:10.3390/bios8020032 es_ES
dc.description.references Ashley, J., Piekarska, M., Segers, C., Trinh, L., Rodgers, T., Willey, R., & Tothill, I. E. (2017). An SPR based sensor for allergens detection. Biosensors and Bioelectronics, 88, 109-113. doi:10.1016/j.bios.2016.07.101 es_ES
dc.description.references Ashley, J., Shahbazi, M.-A., Kant, K., Chidambara, V. A., Wolff, A., Bang, D. D., & Sun, Y. (2017). Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosensors and Bioelectronics, 91, 606-615. doi:10.1016/j.bios.2017.01.018 es_ES
dc.description.references Zhou, J., Wang, Y., Qian, Y., Zhang, T., Zheng, L., & Fu, L. (2020). Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control, 107, 106547. doi:10.1016/j.foodcont.2019.02.041 es_ES
dc.description.references Thevenot, D. R., Tóth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry, 71(12), 2333-2348. doi:10.1351/pac199971122333 es_ES
dc.description.references Pereira-Barros, M. A., Barroso, M. F., Martín-Pedraza, L., Vargas, E., Benedé, S., Villalba, M., … Pingarrón, J. M. (2019). Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosensors and Bioelectronics, 137, 171-177. doi:10.1016/j.bios.2019.05.011 es_ES
dc.description.references Angulo-Ibáñez, A., Eletxigerra, U., Lasheras, X., Campuzano, S., & Merino, S. (2019). Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta, 1079, 94-102. doi:10.1016/j.aca.2019.06.030 es_ES
dc.description.references Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., … Lee, H. (2017). Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS Nano, 11(10), 10062-10069. doi:10.1021/acsnano.7b04318 es_ES
dc.description.references Alves, R. C., Pimentel, F. B., Nouws, H. P. A., Marques, R. C. B., González-García, M. B., Oliveira, M. B. P. P., & Delerue-Matos, C. (2015). Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 64, 19-24. doi:10.1016/j.bios.2014.08.026 es_ES
dc.description.references Jiang, H., Jiang, D., Zhu, P., Pi, F., Ji, J., Sun, C., … Sun, X. (2016). A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors and Bioelectronics, 83, 126-133. doi:10.1016/j.bios.2016.04.028 es_ES
dc.description.references Jiang, D., Zhu, P., Jiang, H., Ji, J., Sun, X., Gu, W., & Zhang, G. (2015). Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors and Bioelectronics, 70, 482-490. doi:10.1016/j.bios.2015.03.058 es_ES
dc.description.references Ng, E., Nadeau, K. C., & Wang, S. X. (2016). Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosensors and Bioelectronics, 80, 359-365. doi:10.1016/j.bios.2016.02.002 es_ES
dc.description.references Angelopoulou, M., Petrou, P. S., Makarona, E., Haasnoot, W., Moser, I., Jobst, G., … Kakabakos, S. E. (2018). Ultrafast Multiplexed-Allergen Detection through Advanced Fluidic Design and Monolithic Interferometric Silicon Chips. Analytical Chemistry, 90(15), 9559-9567. doi:10.1021/acs.analchem.8b02321 es_ES
dc.description.references Ito, K., Yamamoto, T., Oyama, Y., Tsuruma, R., Saito, E., Saito, Y., … Shoji, M. (2016). Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Analytical and Bioanalytical Chemistry, 408(22), 5973-5984. doi:10.1007/s00216-016-9438-7 es_ES
dc.description.references Verhoeckx, K. C. M., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., … Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240. doi:10.1016/j.fct.2015.03.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem