Mostrar el registro sencillo del ítem
dc.contributor.author | Javadi, Hossein | es_ES |
dc.contributor.author | Urchueguía Schölzel, Javier Fermín | es_ES |
dc.contributor.author | Mousavi Ajarostaghi, Seyed Soheil | es_ES |
dc.contributor.author | Badenes Badenes, Borja | es_ES |
dc.date.accessioned | 2021-05-21T03:32:07Z | |
dc.date.available | 2021-05-21T03:32:07Z | |
dc.date.issued | 2020-10-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166591 | |
dc.description.abstract | [EN] To investigate the impacts of using nano-enhanced phase change materials on the thermal performance of a borehole heat exchanger in the summer season, a three-dimensional numerical model of a borehole heat exchanger is created in the present work. Seven nanoparticles including Cu, CuO, Al2O3, TiO2, SiO2, multi-wall carbon nanotube, and graphene are added to the Paraffin. Considering the highest melting rate and lowest outlet temperature, the selected nano-enhanced phase change material is evaluated in terms of volume fraction (0.05, 0.10, 0.15, 0.20) and then the shape (sphere, brick, cylinder, platelet, blade) of its nanoparticles. Based on the results, the Paraffin containing Cu and SiO2 nanoparticles are found to be the best and worst ones in thermal performance improvement, respectively. Moreover, it is indicated that the increase in the volume fraction of Cu nanoparticles could enhance markedly the melting rate, being 0.20 the most favorable value which increased up to 55% the thermal conductivity of the nano-enhanced phase change material compared to the pure phase change material. Furthermore, the blade shape is by far the most appropriate shape of the Cu nanoparticles by considering about 85% melting of the nano-enhanced phase change materia | es_ES |
dc.description.sponsorship | This research work has been supported financially by the European project GEOCOND (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 727583) and by the European project GEO4CIVHIC (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 792355). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Geothermal energy | es_ES |
dc.subject | Borehole heat exchanger | es_ES |
dc.subject | Nano-enhanced phase change material | es_ES |
dc.subject | Thermal performance | es_ES |
dc.subject | Computational fluid dynamics | es_ES |
dc.subject | Numerical simulation | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13195156 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/792355/EU/Most Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical Buildings/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Javadi, H.; Urchueguía Schölzel, JF.; Mousavi Ajarostaghi, SS.; Badenes Badenes, B. (2020). Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials. Energies. 13(19):1-30. https://doi.org/10.3390/en13195156 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13195156 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\418802 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Javadi, H., Mousavi Ajarostaghi, S. S., Rosen, M. A., & Pourfallah, M. (2019). Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 178, 207-233. doi:10.1016/j.energy.2019.04.094 | es_ES |
dc.description.references | Javadi, H., Mousavi Ajarostaghi, S. S., Pourfallah, M., & Zaboli, M. (2019). Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering, 154, 24-36. doi:10.1016/j.applthermaleng.2019.03.021 | es_ES |
dc.description.references | Javadi, H., Ajarostaghi, S. S. M., Mousavi, S. S., & Pourfallah, M. (2019). Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics, 81, 53-73. doi:10.1016/j.geothermics.2019.04.005 | es_ES |
dc.description.references | Javadi, H., Mousavi Ajarostaghi, S., Rosen, M., & Pourfallah, M. (2018). A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance. Sustainability, 10(12), 4486. doi:10.3390/su10124486 | es_ES |
dc.description.references | Quaggiotto, Zarrella, Emmi, De Carli, Pockelé, Vercruysse, … Bernardi. (2019). Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers. Energies, 12(12), 2321. doi:10.3390/en12122321 | es_ES |
dc.description.references | Serageldin, A. A., Radwan, A., Sakata, Y., Katsura, T., & Nagano, K. (2020). The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation. Energies, 13(6), 1418. doi:10.3390/en13061418 | es_ES |
dc.description.references | Sapińska-Śliwa, A., Sliwa, T., Twardowski, K., Szymski, K., Gonet, A., & Żuk, P. (2020). Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers. Energies, 13(14), 3737. doi:10.3390/en13143737 | es_ES |
dc.description.references | Janiszewski, M., Caballero Hernández, E., Siren, T., Uotinen, L., Kukkonen, I., & Rinne, M. (2018). In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock. Energies, 11(4), 963. doi:10.3390/en11040963 | es_ES |
dc.description.references | Patil, M., Seo, J.-H., Kang, S.-J., & Lee, M.-Y. (2016). Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies, 9(10), 840. doi:10.3390/en9100840 | es_ES |
dc.description.references | Cao, S.-J., Kong, X.-R., Deng, Y., Zhang, W., Yang, L., & Ye, Z.-P. (2017). Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations. Applied Thermal Engineering, 115, 91-98. doi:10.1016/j.applthermaleng.2016.12.098 | es_ES |
dc.description.references | Li, B., Zheng, M., Shahrestani, M., & Zhang, S. (2020). Driving factors of the thermal efficiency of ground source heat pump systems with vertical boreholes in Chongqing by experiments. Journal of Building Engineering, 28, 101049. doi:10.1016/j.jobe.2019.101049 | es_ES |
dc.description.references | Wang, J. L., Zhao, J. D., & Liu, N. (2014). Numerical Simulation of Borehole Heat Transfer with Phase Change Material as Grout. Applied Mechanics and Materials, 577, 44-47. doi:10.4028/www.scientific.net/amm.577.44 | es_ES |
dc.description.references | Li, X., Tong, C., Duanmu, L., & Liu, L. (2016). Research on U-tube Heat Exchanger with Shape-stabilized Phase Change Backfill Material. Procedia Engineering, 146, 640-647. doi:10.1016/j.proeng.2016.06.420 | es_ES |
dc.description.references | Li, X., Tong, C., Duanmu, L., & Liu, L. (2017). Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material. Science and Technology for the Built Environment, 23(3), 430-440. doi:10.1080/23744731.2016.1243409 | es_ES |
dc.description.references | Qi, D., Pu, L., Sun, F., & Li, Y. (2016). Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system. Applied Thermal Engineering, 106, 1023-1032. doi:10.1016/j.applthermaleng.2016.06.048 | es_ES |
dc.description.references | Chen, F., Mao, J., Chen, S., Li, C., Hou, P., & Liao, L. (2018). Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system. Applied Thermal Engineering, 130, 698-709. doi:10.1016/j.applthermaleng.2017.11.062 | es_ES |
dc.description.references | Chen, F., Mao, J., Li, C., Hou, P., Li, Y., Xing, Z., & Chen, S. (2018). Restoration performance and operation characteristics of a vertical U-tube ground source heat pump system with phase change grouts under different running modes. Applied Thermal Engineering, 141, 467-482. doi:10.1016/j.applthermaleng.2018.06.009 | es_ES |
dc.description.references | Zhang, M., Liu, X., Biswas, K., & Warner, J. (2019). A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material. Applied Thermal Engineering, 162, 114297. doi:10.1016/j.applthermaleng.2019.114297 | es_ES |
dc.description.references | Yang, W., Xu, R., Yang, B., & Yang, J. (2019). Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill. Energy, 174, 216-235. doi:10.1016/j.energy.2019.02.172 | es_ES |
dc.description.references | Bottarelli, M., Bortoloni, M., Su, Y., Yousif, C., Aydın, A. A., & Georgiev, A. (2015). Numerical analysis of a novel ground heat exchanger coupled with phase change materials. Applied Thermal Engineering, 88, 369-375. doi:10.1016/j.applthermaleng.2014.10.016 | es_ES |
dc.description.references | Bottarelli, M., Bortoloni, M., & Su, Y. (2015). Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials. Applied Thermal Engineering, 90, 1044-1051. doi:10.1016/j.applthermaleng.2015.04.002 | es_ES |
dc.description.references | Rabin, Y., & Korin, E. (1996). Incorporation of Phase-Change Materials Into a Ground Thermal Energy Storage System: Theoretical Study. Journal of Energy Resources Technology, 118(3), 237-241. doi:10.1115/1.2793868 | es_ES |
dc.description.references | Benli, H., & Durmuş, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy and Buildings, 41(2), 220-228. doi:10.1016/j.enbuild.2008.09.004 | es_ES |
dc.description.references | Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581-589. doi:10.1016/j.enconman.2010.07.033 | es_ES |
dc.description.references | Dehdezi, P. K., Hall, M. R., & Dawson, A. R. (2011). Enhancement of Soil Thermo-Physical Properties Using Microencapsulated Phase Change Materials for Ground Source Heat Pump Applications. Applied Mechanics and Materials, 110-116, 1191-1198. doi:10.4028/www.scientific.net/amm.110-116.1191 | es_ES |
dc.description.references | Zhu, N., Hu, P., Lei, Y., Jiang, Z., & Lei, F. (2015). Numerical study on ground source heat pump integrated with phase change material cooling storage system in office building. Applied Thermal Engineering, 87, 615-623. doi:10.1016/j.applthermaleng.2015.05.056 | es_ES |
dc.description.references | Alkhwildi, A., Elhashmi, R., & Chiasson, A. (2020). Parametric modeling and simulation of Low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank. Geothermics, 86, 101864. doi:10.1016/j.geothermics.2020.101864 | es_ES |
dc.description.references | Pu, L., Xu, L., Zhang, S., & Li, Y. (2019). Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure. Applied Energy, 240, 860-869. doi:10.1016/j.apenergy.2019.02.088 | es_ES |
dc.description.references | Khodadadi, J. M., & Hosseinizadeh, S. F. (2007). Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer, 34(5), 534-543. doi:10.1016/j.icheatmasstransfer.2007.02.005 | es_ES |
dc.description.references | Kalaiselvam, S., Parameshwaran, R., & Harikrishnan, S. (2012). Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renewable Energy, 39(1), 375-387. doi:10.1016/j.renene.2011.08.034 | es_ES |
dc.description.references | Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., & Bahrampoury, R. (2017). Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. Journal of the Taiwan Institute of Chemical Engineers, 81, 316-334. doi:10.1016/j.jtice.2017.09.044 | es_ES |
dc.description.references | Ramakrishnan, S., Wang, X., Sanjayan, J., & Wilson, J. (2017). Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets. Energy Procedia, 105, 4866-4871. doi:10.1016/j.egypro.2017.03.964 | es_ES |
dc.description.references | Dsilva Winfred Rufuss, D., Suganthi, L., Iniyan, S., & Davies, P. A. (2018). Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production, 192, 9-29. doi:10.1016/j.jclepro.2018.04.201 | es_ES |
dc.description.references | Farzanehnia, A., Khatibi, M., Sardarabadi, M., & Passandideh-Fard, M. (2019). Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Conversion and Management, 179, 314-325. doi:10.1016/j.enconman.2018.10.037 | es_ES |
dc.description.references | Yang, L., Huang, J., & Zhou, F. (2020). Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Conversion and Management, 214, 112876. doi:10.1016/j.enconman.2020.112876 | es_ES |
dc.description.references | Tariq, S. L., Ali, H. M., Akram, M. A., Janjua, M. M., & Ahmadlouydarab, M. (2020). Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering, 176, 115305. doi:10.1016/j.applthermaleng.2020.115305 | es_ES |
dc.description.references | Leong, K. Y., Abdul Rahman, M. R., & Gurunathan, B. A. (2019). Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage, 21, 18-31. doi:10.1016/j.est.2018.11.008 | es_ES |
dc.description.references | Dhaidan, N. S., Khodadadi, J. M., Al-Hattab, T. A., & Al-Mashat, S. M. (2013). Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67, 455-468. doi:10.1016/j.ijheatmasstransfer.2013.08.002 | es_ES |
dc.description.references | Babapoor, A., & Karimi, G. (2015). Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering, 90, 945-951. doi:10.1016/j.applthermaleng.2015.07.083 | es_ES |
dc.description.references | Shaikh, S., Lafdi, K., & Hallinan, K. (2008). Carbon nanoadditives to enhance latent energy storage of phase change materials. Journal of Applied Physics, 103(9), 094302. doi:10.1063/1.2903538 | es_ES |
dc.description.references | Kant, K., Shukla, A., Sharma, A., & Henry Biwole, P. (2017). Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy, 146, 453-463. doi:10.1016/j.solener.2017.03.013 | es_ES |
dc.description.references | Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191. doi:10.1021/i160003a005 | es_ES |
dc.description.references | Timofeeva, E. V., Routbort, J. L., & Singh, D. (2009). Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics, 106(1), 014304. doi:10.1063/1.3155999 | es_ES |
dc.description.references | Shi, X., Jaryani, P., Amiri, A., Rahimi, A., & Malekshah, E. H. (2019). Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect. Powder Technology, 346, 160-170. doi:10.1016/j.powtec.2018.12.071 | es_ES |
dc.description.references | Mousavi Ajarostaghi, S. S., Poncet, S., Sedighi, K., & Aghajani Delavar, M. (2019). Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences, 9(13), 2726. doi:10.3390/app9132726 | es_ES |
dc.description.references | Afsharpanah, F., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1317-3 | es_ES |
dc.description.references | Pakzad, K., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1316-4 | es_ES |
dc.description.references | Mousavi Ajarostaghi, S. S., Sedighi, K., Aghajani Delavar, M., & Poncet, S. (2020). Numerical Study of a Horizontal and Vertical Shell and Tube Ice Storage Systems Considering Three Types of Tube. Applied Sciences, 10(3), 1059. doi:10.3390/app10031059 | es_ES |
dc.description.references | Mousavi Ajarostaghi, S. S., Sedighi, K., Delavar, M. A., & Poncet, S. (2019). Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Applied Sciences, 2(1). doi:10.1007/s42452-019-1912-3 | es_ES |
dc.description.references | Ajarostaghi, S. S. M., Delavar, M. A., & Dolati, A. (2017). NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES. Heat Transfer Research, 48(16), 1515-1529. doi:10.1615/heattransres.2017015549 | es_ES |