- -

Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Javadi, Hossein es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.contributor.author Mousavi Ajarostaghi, Seyed Soheil es_ES
dc.contributor.author Badenes Badenes, Borja es_ES
dc.date.accessioned 2021-05-21T03:32:07Z
dc.date.available 2021-05-21T03:32:07Z
dc.date.issued 2020-10-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166591
dc.description.abstract [EN] To investigate the impacts of using nano-enhanced phase change materials on the thermal performance of a borehole heat exchanger in the summer season, a three-dimensional numerical model of a borehole heat exchanger is created in the present work. Seven nanoparticles including Cu, CuO, Al2O3, TiO2, SiO2, multi-wall carbon nanotube, and graphene are added to the Paraffin. Considering the highest melting rate and lowest outlet temperature, the selected nano-enhanced phase change material is evaluated in terms of volume fraction (0.05, 0.10, 0.15, 0.20) and then the shape (sphere, brick, cylinder, platelet, blade) of its nanoparticles. Based on the results, the Paraffin containing Cu and SiO2 nanoparticles are found to be the best and worst ones in thermal performance improvement, respectively. Moreover, it is indicated that the increase in the volume fraction of Cu nanoparticles could enhance markedly the melting rate, being 0.20 the most favorable value which increased up to 55% the thermal conductivity of the nano-enhanced phase change material compared to the pure phase change material. Furthermore, the blade shape is by far the most appropriate shape of the Cu nanoparticles by considering about 85% melting of the nano-enhanced phase change materia es_ES
dc.description.sponsorship This research work has been supported financially by the European project GEOCOND (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 727583) and by the European project GEO4CIVHIC (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 792355). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Geothermal energy es_ES
dc.subject Borehole heat exchanger es_ES
dc.subject Nano-enhanced phase change material es_ES
dc.subject Thermal performance es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject Numerical simulation es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13195156 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/792355/EU/Most Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical Buildings/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Javadi, H.; Urchueguía Schölzel, JF.; Mousavi Ajarostaghi, SS.; Badenes Badenes, B. (2020). Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials. Energies. 13(19):1-30. https://doi.org/10.3390/en13195156 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13195156 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\418802 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Javadi, H., Mousavi Ajarostaghi, S. S., Rosen, M. A., & Pourfallah, M. (2019). Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 178, 207-233. doi:10.1016/j.energy.2019.04.094 es_ES
dc.description.references Javadi, H., Mousavi Ajarostaghi, S. S., Pourfallah, M., & Zaboli, M. (2019). Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering, 154, 24-36. doi:10.1016/j.applthermaleng.2019.03.021 es_ES
dc.description.references Javadi, H., Ajarostaghi, S. S. M., Mousavi, S. S., & Pourfallah, M. (2019). Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics, 81, 53-73. doi:10.1016/j.geothermics.2019.04.005 es_ES
dc.description.references Javadi, H., Mousavi Ajarostaghi, S., Rosen, M., & Pourfallah, M. (2018). A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance. Sustainability, 10(12), 4486. doi:10.3390/su10124486 es_ES
dc.description.references Quaggiotto, Zarrella, Emmi, De Carli, Pockelé, Vercruysse, … Bernardi. (2019). Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers. Energies, 12(12), 2321. doi:10.3390/en12122321 es_ES
dc.description.references Serageldin, A. A., Radwan, A., Sakata, Y., Katsura, T., & Nagano, K. (2020). The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation. Energies, 13(6), 1418. doi:10.3390/en13061418 es_ES
dc.description.references Sapińska-Śliwa, A., Sliwa, T., Twardowski, K., Szymski, K., Gonet, A., & Żuk, P. (2020). Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers. Energies, 13(14), 3737. doi:10.3390/en13143737 es_ES
dc.description.references Janiszewski, M., Caballero Hernández, E., Siren, T., Uotinen, L., Kukkonen, I., & Rinne, M. (2018). In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock. Energies, 11(4), 963. doi:10.3390/en11040963 es_ES
dc.description.references Patil, M., Seo, J.-H., Kang, S.-J., & Lee, M.-Y. (2016). Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies, 9(10), 840. doi:10.3390/en9100840 es_ES
dc.description.references Cao, S.-J., Kong, X.-R., Deng, Y., Zhang, W., Yang, L., & Ye, Z.-P. (2017). Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations. Applied Thermal Engineering, 115, 91-98. doi:10.1016/j.applthermaleng.2016.12.098 es_ES
dc.description.references Li, B., Zheng, M., Shahrestani, M., & Zhang, S. (2020). Driving factors of the thermal efficiency of ground source heat pump systems with vertical boreholes in Chongqing by experiments. Journal of Building Engineering, 28, 101049. doi:10.1016/j.jobe.2019.101049 es_ES
dc.description.references Wang, J. L., Zhao, J. D., & Liu, N. (2014). Numerical Simulation of Borehole Heat Transfer with Phase Change Material as Grout. Applied Mechanics and Materials, 577, 44-47. doi:10.4028/www.scientific.net/amm.577.44 es_ES
dc.description.references Li, X., Tong, C., Duanmu, L., & Liu, L. (2016). Research on U-tube Heat Exchanger with Shape-stabilized Phase Change Backfill Material. Procedia Engineering, 146, 640-647. doi:10.1016/j.proeng.2016.06.420 es_ES
dc.description.references Li, X., Tong, C., Duanmu, L., & Liu, L. (2017). Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material. Science and Technology for the Built Environment, 23(3), 430-440. doi:10.1080/23744731.2016.1243409 es_ES
dc.description.references Qi, D., Pu, L., Sun, F., & Li, Y. (2016). Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system. Applied Thermal Engineering, 106, 1023-1032. doi:10.1016/j.applthermaleng.2016.06.048 es_ES
dc.description.references Chen, F., Mao, J., Chen, S., Li, C., Hou, P., & Liao, L. (2018). Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system. Applied Thermal Engineering, 130, 698-709. doi:10.1016/j.applthermaleng.2017.11.062 es_ES
dc.description.references Chen, F., Mao, J., Li, C., Hou, P., Li, Y., Xing, Z., & Chen, S. (2018). Restoration performance and operation characteristics of a vertical U-tube ground source heat pump system with phase change grouts under different running modes. Applied Thermal Engineering, 141, 467-482. doi:10.1016/j.applthermaleng.2018.06.009 es_ES
dc.description.references Zhang, M., Liu, X., Biswas, K., & Warner, J. (2019). A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material. Applied Thermal Engineering, 162, 114297. doi:10.1016/j.applthermaleng.2019.114297 es_ES
dc.description.references Yang, W., Xu, R., Yang, B., & Yang, J. (2019). Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill. Energy, 174, 216-235. doi:10.1016/j.energy.2019.02.172 es_ES
dc.description.references Bottarelli, M., Bortoloni, M., Su, Y., Yousif, C., Aydın, A. A., & Georgiev, A. (2015). Numerical analysis of a novel ground heat exchanger coupled with phase change materials. Applied Thermal Engineering, 88, 369-375. doi:10.1016/j.applthermaleng.2014.10.016 es_ES
dc.description.references Bottarelli, M., Bortoloni, M., & Su, Y. (2015). Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials. Applied Thermal Engineering, 90, 1044-1051. doi:10.1016/j.applthermaleng.2015.04.002 es_ES
dc.description.references Rabin, Y., & Korin, E. (1996). Incorporation of Phase-Change Materials Into a Ground Thermal Energy Storage System: Theoretical Study. Journal of Energy Resources Technology, 118(3), 237-241. doi:10.1115/1.2793868 es_ES
dc.description.references Benli, H., & Durmuş, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy and Buildings, 41(2), 220-228. doi:10.1016/j.enbuild.2008.09.004 es_ES
dc.description.references Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581-589. doi:10.1016/j.enconman.2010.07.033 es_ES
dc.description.references Dehdezi, P. K., Hall, M. R., & Dawson, A. R. (2011). Enhancement of Soil Thermo-Physical Properties Using Microencapsulated Phase Change Materials for Ground Source Heat Pump Applications. Applied Mechanics and Materials, 110-116, 1191-1198. doi:10.4028/www.scientific.net/amm.110-116.1191 es_ES
dc.description.references Zhu, N., Hu, P., Lei, Y., Jiang, Z., & Lei, F. (2015). Numerical study on ground source heat pump integrated with phase change material cooling storage system in office building. Applied Thermal Engineering, 87, 615-623. doi:10.1016/j.applthermaleng.2015.05.056 es_ES
dc.description.references Alkhwildi, A., Elhashmi, R., & Chiasson, A. (2020). Parametric modeling and simulation of Low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank. Geothermics, 86, 101864. doi:10.1016/j.geothermics.2020.101864 es_ES
dc.description.references Pu, L., Xu, L., Zhang, S., & Li, Y. (2019). Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure. Applied Energy, 240, 860-869. doi:10.1016/j.apenergy.2019.02.088 es_ES
dc.description.references Khodadadi, J. M., & Hosseinizadeh, S. F. (2007). Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer, 34(5), 534-543. doi:10.1016/j.icheatmasstransfer.2007.02.005 es_ES
dc.description.references Kalaiselvam, S., Parameshwaran, R., & Harikrishnan, S. (2012). Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renewable Energy, 39(1), 375-387. doi:10.1016/j.renene.2011.08.034 es_ES
dc.description.references Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., & Bahrampoury, R. (2017). Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. Journal of the Taiwan Institute of Chemical Engineers, 81, 316-334. doi:10.1016/j.jtice.2017.09.044 es_ES
dc.description.references Ramakrishnan, S., Wang, X., Sanjayan, J., & Wilson, J. (2017). Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets. Energy Procedia, 105, 4866-4871. doi:10.1016/j.egypro.2017.03.964 es_ES
dc.description.references Dsilva Winfred Rufuss, D., Suganthi, L., Iniyan, S., & Davies, P. A. (2018). Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production, 192, 9-29. doi:10.1016/j.jclepro.2018.04.201 es_ES
dc.description.references Farzanehnia, A., Khatibi, M., Sardarabadi, M., & Passandideh-Fard, M. (2019). Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Conversion and Management, 179, 314-325. doi:10.1016/j.enconman.2018.10.037 es_ES
dc.description.references Yang, L., Huang, J., & Zhou, F. (2020). Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Conversion and Management, 214, 112876. doi:10.1016/j.enconman.2020.112876 es_ES
dc.description.references Tariq, S. L., Ali, H. M., Akram, M. A., Janjua, M. M., & Ahmadlouydarab, M. (2020). Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering, 176, 115305. doi:10.1016/j.applthermaleng.2020.115305 es_ES
dc.description.references Leong, K. Y., Abdul Rahman, M. R., & Gurunathan, B. A. (2019). Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage, 21, 18-31. doi:10.1016/j.est.2018.11.008 es_ES
dc.description.references Dhaidan, N. S., Khodadadi, J. M., Al-Hattab, T. A., & Al-Mashat, S. M. (2013). Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67, 455-468. doi:10.1016/j.ijheatmasstransfer.2013.08.002 es_ES
dc.description.references Babapoor, A., & Karimi, G. (2015). Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering, 90, 945-951. doi:10.1016/j.applthermaleng.2015.07.083 es_ES
dc.description.references Shaikh, S., Lafdi, K., & Hallinan, K. (2008). Carbon nanoadditives to enhance latent energy storage of phase change materials. Journal of Applied Physics, 103(9), 094302. doi:10.1063/1.2903538 es_ES
dc.description.references Kant, K., Shukla, A., Sharma, A., & Henry Biwole, P. (2017). Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy, 146, 453-463. doi:10.1016/j.solener.2017.03.013 es_ES
dc.description.references Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191. doi:10.1021/i160003a005 es_ES
dc.description.references Timofeeva, E. V., Routbort, J. L., & Singh, D. (2009). Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics, 106(1), 014304. doi:10.1063/1.3155999 es_ES
dc.description.references Shi, X., Jaryani, P., Amiri, A., Rahimi, A., & Malekshah, E. H. (2019). Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect. Powder Technology, 346, 160-170. doi:10.1016/j.powtec.2018.12.071 es_ES
dc.description.references Mousavi Ajarostaghi, S. S., Poncet, S., Sedighi, K., & Aghajani Delavar, M. (2019). Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences, 9(13), 2726. doi:10.3390/app9132726 es_ES
dc.description.references Afsharpanah, F., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1317-3 es_ES
dc.description.references Pakzad, K., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1316-4 es_ES
dc.description.references Mousavi Ajarostaghi, S. S., Sedighi, K., Aghajani Delavar, M., & Poncet, S. (2020). Numerical Study of a Horizontal and Vertical Shell and Tube Ice Storage Systems Considering Three Types of Tube. Applied Sciences, 10(3), 1059. doi:10.3390/app10031059 es_ES
dc.description.references Mousavi Ajarostaghi, S. S., Sedighi, K., Delavar, M. A., & Poncet, S. (2019). Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Applied Sciences, 2(1). doi:10.1007/s42452-019-1912-3 es_ES
dc.description.references Ajarostaghi, S. S. M., Delavar, M. A., & Dolati, A. (2017). NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES. Heat Transfer Research, 48(16), 1515-1529. doi:10.1615/heattransres.2017015549 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem