Javadi, H., Mousavi Ajarostaghi, S. S., Rosen, M. A., & Pourfallah, M. (2019). Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 178, 207-233. doi:10.1016/j.energy.2019.04.094
Javadi, H., Mousavi Ajarostaghi, S. S., Pourfallah, M., & Zaboli, M. (2019). Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering, 154, 24-36. doi:10.1016/j.applthermaleng.2019.03.021
Javadi, H., Ajarostaghi, S. S. M., Mousavi, S. S., & Pourfallah, M. (2019). Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics, 81, 53-73. doi:10.1016/j.geothermics.2019.04.005
[+]
Javadi, H., Mousavi Ajarostaghi, S. S., Rosen, M. A., & Pourfallah, M. (2019). Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 178, 207-233. doi:10.1016/j.energy.2019.04.094
Javadi, H., Mousavi Ajarostaghi, S. S., Pourfallah, M., & Zaboli, M. (2019). Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering, 154, 24-36. doi:10.1016/j.applthermaleng.2019.03.021
Javadi, H., Ajarostaghi, S. S. M., Mousavi, S. S., & Pourfallah, M. (2019). Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics, 81, 53-73. doi:10.1016/j.geothermics.2019.04.005
Javadi, H., Mousavi Ajarostaghi, S., Rosen, M., & Pourfallah, M. (2018). A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance. Sustainability, 10(12), 4486. doi:10.3390/su10124486
Quaggiotto, Zarrella, Emmi, De Carli, Pockelé, Vercruysse, … Bernardi. (2019). Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers. Energies, 12(12), 2321. doi:10.3390/en12122321
Serageldin, A. A., Radwan, A., Sakata, Y., Katsura, T., & Nagano, K. (2020). The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation. Energies, 13(6), 1418. doi:10.3390/en13061418
Sapińska-Śliwa, A., Sliwa, T., Twardowski, K., Szymski, K., Gonet, A., & Żuk, P. (2020). Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers. Energies, 13(14), 3737. doi:10.3390/en13143737
Janiszewski, M., Caballero Hernández, E., Siren, T., Uotinen, L., Kukkonen, I., & Rinne, M. (2018). In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock. Energies, 11(4), 963. doi:10.3390/en11040963
Patil, M., Seo, J.-H., Kang, S.-J., & Lee, M.-Y. (2016). Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies, 9(10), 840. doi:10.3390/en9100840
Cao, S.-J., Kong, X.-R., Deng, Y., Zhang, W., Yang, L., & Ye, Z.-P. (2017). Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations. Applied Thermal Engineering, 115, 91-98. doi:10.1016/j.applthermaleng.2016.12.098
Li, B., Zheng, M., Shahrestani, M., & Zhang, S. (2020). Driving factors of the thermal efficiency of ground source heat pump systems with vertical boreholes in Chongqing by experiments. Journal of Building Engineering, 28, 101049. doi:10.1016/j.jobe.2019.101049
Wang, J. L., Zhao, J. D., & Liu, N. (2014). Numerical Simulation of Borehole Heat Transfer with Phase Change Material as Grout. Applied Mechanics and Materials, 577, 44-47. doi:10.4028/www.scientific.net/amm.577.44
Li, X., Tong, C., Duanmu, L., & Liu, L. (2016). Research on U-tube Heat Exchanger with Shape-stabilized Phase Change Backfill Material. Procedia Engineering, 146, 640-647. doi:10.1016/j.proeng.2016.06.420
Li, X., Tong, C., Duanmu, L., & Liu, L. (2017). Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material. Science and Technology for the Built Environment, 23(3), 430-440. doi:10.1080/23744731.2016.1243409
Qi, D., Pu, L., Sun, F., & Li, Y. (2016). Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system. Applied Thermal Engineering, 106, 1023-1032. doi:10.1016/j.applthermaleng.2016.06.048
Chen, F., Mao, J., Chen, S., Li, C., Hou, P., & Liao, L. (2018). Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system. Applied Thermal Engineering, 130, 698-709. doi:10.1016/j.applthermaleng.2017.11.062
Chen, F., Mao, J., Li, C., Hou, P., Li, Y., Xing, Z., & Chen, S. (2018). Restoration performance and operation characteristics of a vertical U-tube ground source heat pump system with phase change grouts under different running modes. Applied Thermal Engineering, 141, 467-482. doi:10.1016/j.applthermaleng.2018.06.009
Zhang, M., Liu, X., Biswas, K., & Warner, J. (2019). A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material. Applied Thermal Engineering, 162, 114297. doi:10.1016/j.applthermaleng.2019.114297
Yang, W., Xu, R., Yang, B., & Yang, J. (2019). Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill. Energy, 174, 216-235. doi:10.1016/j.energy.2019.02.172
Bottarelli, M., Bortoloni, M., Su, Y., Yousif, C., Aydın, A. A., & Georgiev, A. (2015). Numerical analysis of a novel ground heat exchanger coupled with phase change materials. Applied Thermal Engineering, 88, 369-375. doi:10.1016/j.applthermaleng.2014.10.016
Bottarelli, M., Bortoloni, M., & Su, Y. (2015). Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials. Applied Thermal Engineering, 90, 1044-1051. doi:10.1016/j.applthermaleng.2015.04.002
Rabin, Y., & Korin, E. (1996). Incorporation of Phase-Change Materials Into a Ground Thermal Energy Storage System: Theoretical Study. Journal of Energy Resources Technology, 118(3), 237-241. doi:10.1115/1.2793868
Benli, H., & Durmuş, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy and Buildings, 41(2), 220-228. doi:10.1016/j.enbuild.2008.09.004
Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581-589. doi:10.1016/j.enconman.2010.07.033
Dehdezi, P. K., Hall, M. R., & Dawson, A. R. (2011). Enhancement of Soil Thermo-Physical Properties Using Microencapsulated Phase Change Materials for Ground Source Heat Pump Applications. Applied Mechanics and Materials, 110-116, 1191-1198. doi:10.4028/www.scientific.net/amm.110-116.1191
Zhu, N., Hu, P., Lei, Y., Jiang, Z., & Lei, F. (2015). Numerical study on ground source heat pump integrated with phase change material cooling storage system in office building. Applied Thermal Engineering, 87, 615-623. doi:10.1016/j.applthermaleng.2015.05.056
Alkhwildi, A., Elhashmi, R., & Chiasson, A. (2020). Parametric modeling and simulation of Low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank. Geothermics, 86, 101864. doi:10.1016/j.geothermics.2020.101864
Pu, L., Xu, L., Zhang, S., & Li, Y. (2019). Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure. Applied Energy, 240, 860-869. doi:10.1016/j.apenergy.2019.02.088
Khodadadi, J. M., & Hosseinizadeh, S. F. (2007). Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer, 34(5), 534-543. doi:10.1016/j.icheatmasstransfer.2007.02.005
Kalaiselvam, S., Parameshwaran, R., & Harikrishnan, S. (2012). Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renewable Energy, 39(1), 375-387. doi:10.1016/j.renene.2011.08.034
Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., & Bahrampoury, R. (2017). Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. Journal of the Taiwan Institute of Chemical Engineers, 81, 316-334. doi:10.1016/j.jtice.2017.09.044
Ramakrishnan, S., Wang, X., Sanjayan, J., & Wilson, J. (2017). Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets. Energy Procedia, 105, 4866-4871. doi:10.1016/j.egypro.2017.03.964
Dsilva Winfred Rufuss, D., Suganthi, L., Iniyan, S., & Davies, P. A. (2018). Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production, 192, 9-29. doi:10.1016/j.jclepro.2018.04.201
Farzanehnia, A., Khatibi, M., Sardarabadi, M., & Passandideh-Fard, M. (2019). Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Conversion and Management, 179, 314-325. doi:10.1016/j.enconman.2018.10.037
Yang, L., Huang, J., & Zhou, F. (2020). Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Conversion and Management, 214, 112876. doi:10.1016/j.enconman.2020.112876
Tariq, S. L., Ali, H. M., Akram, M. A., Janjua, M. M., & Ahmadlouydarab, M. (2020). Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering, 176, 115305. doi:10.1016/j.applthermaleng.2020.115305
Leong, K. Y., Abdul Rahman, M. R., & Gurunathan, B. A. (2019). Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage, 21, 18-31. doi:10.1016/j.est.2018.11.008
Dhaidan, N. S., Khodadadi, J. M., Al-Hattab, T. A., & Al-Mashat, S. M. (2013). Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67, 455-468. doi:10.1016/j.ijheatmasstransfer.2013.08.002
Babapoor, A., & Karimi, G. (2015). Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering, 90, 945-951. doi:10.1016/j.applthermaleng.2015.07.083
Shaikh, S., Lafdi, K., & Hallinan, K. (2008). Carbon nanoadditives to enhance latent energy storage of phase change materials. Journal of Applied Physics, 103(9), 094302. doi:10.1063/1.2903538
Kant, K., Shukla, A., Sharma, A., & Henry Biwole, P. (2017). Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy, 146, 453-463. doi:10.1016/j.solener.2017.03.013
Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191. doi:10.1021/i160003a005
Timofeeva, E. V., Routbort, J. L., & Singh, D. (2009). Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics, 106(1), 014304. doi:10.1063/1.3155999
Shi, X., Jaryani, P., Amiri, A., Rahimi, A., & Malekshah, E. H. (2019). Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect. Powder Technology, 346, 160-170. doi:10.1016/j.powtec.2018.12.071
Mousavi Ajarostaghi, S. S., Poncet, S., Sedighi, K., & Aghajani Delavar, M. (2019). Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences, 9(13), 2726. doi:10.3390/app9132726
Afsharpanah, F., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1317-3
Pakzad, K., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1316-4
Mousavi Ajarostaghi, S. S., Sedighi, K., Aghajani Delavar, M., & Poncet, S. (2020). Numerical Study of a Horizontal and Vertical Shell and Tube Ice Storage Systems Considering Three Types of Tube. Applied Sciences, 10(3), 1059. doi:10.3390/app10031059
Mousavi Ajarostaghi, S. S., Sedighi, K., Delavar, M. A., & Poncet, S. (2019). Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Applied Sciences, 2(1). doi:10.1007/s42452-019-1912-3
Ajarostaghi, S. S. M., Delavar, M. A., & Dolati, A. (2017). NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES. Heat Transfer Research, 48(16), 1515-1529. doi:10.1615/heattransres.2017015549
[-]