- -

Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials

Mostrar el registro completo del ítem

Javadi, H.; Urchueguía Schölzel, JF.; Mousavi Ajarostaghi, SS.; Badenes Badenes, B. (2020). Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials. Energies. 13(19):1-30. https://doi.org/10.3390/en13195156

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166591

Ficheros en el ítem

Metadatos del ítem

Título: Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials
Autor: Javadi, Hossein Urchueguía Schölzel, Javier Fermín Mousavi Ajarostaghi, Seyed Soheil Badenes Badenes, Borja
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] To investigate the impacts of using nano-enhanced phase change materials on the thermal performance of a borehole heat exchanger in the summer season, a three-dimensional numerical model of a borehole heat exchanger ...[+]
Palabras clave: Geothermal energy , Borehole heat exchanger , Nano-enhanced phase change material , Thermal performance , Computational fluid dynamics , Numerical simulation
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en13195156
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/en13195156
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/
info:eu-repo/grantAgreement/EC/H2020/792355/EU/Most Easy, Efficient and Low Cost Geothermal Systems for Retrofitting Civil and Historical Buildings/
Agradecimientos:
This research work has been supported financially by the European project GEOCOND (funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 727583) and by the European project ...[+]
Tipo: Artículo

References

Javadi, H., Mousavi Ajarostaghi, S. S., Rosen, M. A., & Pourfallah, M. (2019). Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 178, 207-233. doi:10.1016/j.energy.2019.04.094

Javadi, H., Mousavi Ajarostaghi, S. S., Pourfallah, M., & Zaboli, M. (2019). Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering, 154, 24-36. doi:10.1016/j.applthermaleng.2019.03.021

Javadi, H., Ajarostaghi, S. S. M., Mousavi, S. S., & Pourfallah, M. (2019). Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics, 81, 53-73. doi:10.1016/j.geothermics.2019.04.005 [+]
Javadi, H., Mousavi Ajarostaghi, S. S., Rosen, M. A., & Pourfallah, M. (2019). Performance of ground heat exchangers: A comprehensive review of recent advances. Energy, 178, 207-233. doi:10.1016/j.energy.2019.04.094

Javadi, H., Mousavi Ajarostaghi, S. S., Pourfallah, M., & Zaboli, M. (2019). Performance analysis of helical ground heat exchangers with different configurations. Applied Thermal Engineering, 154, 24-36. doi:10.1016/j.applthermaleng.2019.03.021

Javadi, H., Ajarostaghi, S. S. M., Mousavi, S. S., & Pourfallah, M. (2019). Thermal analysis of a triple helix ground heat exchanger using numerical simulation and multiple linear regression. Geothermics, 81, 53-73. doi:10.1016/j.geothermics.2019.04.005

Javadi, H., Mousavi Ajarostaghi, S., Rosen, M., & Pourfallah, M. (2018). A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance. Sustainability, 10(12), 4486. doi:10.3390/su10124486

Quaggiotto, Zarrella, Emmi, De Carli, Pockelé, Vercruysse, … Bernardi. (2019). Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers. Energies, 12(12), 2321. doi:10.3390/en12122321

Serageldin, A. A., Radwan, A., Sakata, Y., Katsura, T., & Nagano, K. (2020). The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation. Energies, 13(6), 1418. doi:10.3390/en13061418

Sapińska-Śliwa, A., Sliwa, T., Twardowski, K., Szymski, K., Gonet, A., & Żuk, P. (2020). Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers. Energies, 13(14), 3737. doi:10.3390/en13143737

Janiszewski, M., Caballero Hernández, E., Siren, T., Uotinen, L., Kukkonen, I., & Rinne, M. (2018). In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock. Energies, 11(4), 963. doi:10.3390/en11040963

Patil, M., Seo, J.-H., Kang, S.-J., & Lee, M.-Y. (2016). Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids. Energies, 9(10), 840. doi:10.3390/en9100840

Cao, S.-J., Kong, X.-R., Deng, Y., Zhang, W., Yang, L., & Ye, Z.-P. (2017). Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations. Applied Thermal Engineering, 115, 91-98. doi:10.1016/j.applthermaleng.2016.12.098

Li, B., Zheng, M., Shahrestani, M., & Zhang, S. (2020). Driving factors of the thermal efficiency of ground source heat pump systems with vertical boreholes in Chongqing by experiments. Journal of Building Engineering, 28, 101049. doi:10.1016/j.jobe.2019.101049

Wang, J. L., Zhao, J. D., & Liu, N. (2014). Numerical Simulation of Borehole Heat Transfer with Phase Change Material as Grout. Applied Mechanics and Materials, 577, 44-47. doi:10.4028/www.scientific.net/amm.577.44

Li, X., Tong, C., Duanmu, L., & Liu, L. (2016). Research on U-tube Heat Exchanger with Shape-stabilized Phase Change Backfill Material. Procedia Engineering, 146, 640-647. doi:10.1016/j.proeng.2016.06.420

Li, X., Tong, C., Duanmu, L., & Liu, L. (2017). Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material. Science and Technology for the Built Environment, 23(3), 430-440. doi:10.1080/23744731.2016.1243409

Qi, D., Pu, L., Sun, F., & Li, Y. (2016). Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system. Applied Thermal Engineering, 106, 1023-1032. doi:10.1016/j.applthermaleng.2016.06.048

Chen, F., Mao, J., Chen, S., Li, C., Hou, P., & Liao, L. (2018). Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system. Applied Thermal Engineering, 130, 698-709. doi:10.1016/j.applthermaleng.2017.11.062

Chen, F., Mao, J., Li, C., Hou, P., Li, Y., Xing, Z., & Chen, S. (2018). Restoration performance and operation characteristics of a vertical U-tube ground source heat pump system with phase change grouts under different running modes. Applied Thermal Engineering, 141, 467-482. doi:10.1016/j.applthermaleng.2018.06.009

Zhang, M., Liu, X., Biswas, K., & Warner, J. (2019). A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material. Applied Thermal Engineering, 162, 114297. doi:10.1016/j.applthermaleng.2019.114297

Yang, W., Xu, R., Yang, B., & Yang, J. (2019). Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill. Energy, 174, 216-235. doi:10.1016/j.energy.2019.02.172

Bottarelli, M., Bortoloni, M., Su, Y., Yousif, C., Aydın, A. A., & Georgiev, A. (2015). Numerical analysis of a novel ground heat exchanger coupled with phase change materials. Applied Thermal Engineering, 88, 369-375. doi:10.1016/j.applthermaleng.2014.10.016

Bottarelli, M., Bortoloni, M., & Su, Y. (2015). Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials. Applied Thermal Engineering, 90, 1044-1051. doi:10.1016/j.applthermaleng.2015.04.002

Rabin, Y., & Korin, E. (1996). Incorporation of Phase-Change Materials Into a Ground Thermal Energy Storage System: Theoretical Study. Journal of Energy Resources Technology, 118(3), 237-241. doi:10.1115/1.2793868

Benli, H., & Durmuş, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy and Buildings, 41(2), 220-228. doi:10.1016/j.enbuild.2008.09.004

Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581-589. doi:10.1016/j.enconman.2010.07.033

Dehdezi, P. K., Hall, M. R., & Dawson, A. R. (2011). Enhancement of Soil Thermo-Physical Properties Using Microencapsulated Phase Change Materials for Ground Source Heat Pump Applications. Applied Mechanics and Materials, 110-116, 1191-1198. doi:10.4028/www.scientific.net/amm.110-116.1191

Zhu, N., Hu, P., Lei, Y., Jiang, Z., & Lei, F. (2015). Numerical study on ground source heat pump integrated with phase change material cooling storage system in office building. Applied Thermal Engineering, 87, 615-623. doi:10.1016/j.applthermaleng.2015.05.056

Alkhwildi, A., Elhashmi, R., & Chiasson, A. (2020). Parametric modeling and simulation of Low temperature energy storage for cold-climate multi-family residences using a geothermal heat pump system with integrated phase change material storage tank. Geothermics, 86, 101864. doi:10.1016/j.geothermics.2020.101864

Pu, L., Xu, L., Zhang, S., & Li, Y. (2019). Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure. Applied Energy, 240, 860-869. doi:10.1016/j.apenergy.2019.02.088

Khodadadi, J. M., & Hosseinizadeh, S. F. (2007). Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer, 34(5), 534-543. doi:10.1016/j.icheatmasstransfer.2007.02.005

Kalaiselvam, S., Parameshwaran, R., & Harikrishnan, S. (2012). Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renewable Energy, 39(1), 375-387. doi:10.1016/j.renene.2011.08.034

Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., & Bahrampoury, R. (2017). Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. Journal of the Taiwan Institute of Chemical Engineers, 81, 316-334. doi:10.1016/j.jtice.2017.09.044

Ramakrishnan, S., Wang, X., Sanjayan, J., & Wilson, J. (2017). Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets. Energy Procedia, 105, 4866-4871. doi:10.1016/j.egypro.2017.03.964

Dsilva Winfred Rufuss, D., Suganthi, L., Iniyan, S., & Davies, P. A. (2018). Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. Journal of Cleaner Production, 192, 9-29. doi:10.1016/j.jclepro.2018.04.201

Farzanehnia, A., Khatibi, M., Sardarabadi, M., & Passandideh-Fard, M. (2019). Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Conversion and Management, 179, 314-325. doi:10.1016/j.enconman.2018.10.037

Yang, L., Huang, J., & Zhou, F. (2020). Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Conversion and Management, 214, 112876. doi:10.1016/j.enconman.2020.112876

Tariq, S. L., Ali, H. M., Akram, M. A., Janjua, M. M., & Ahmadlouydarab, M. (2020). Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering, 176, 115305. doi:10.1016/j.applthermaleng.2020.115305

Leong, K. Y., Abdul Rahman, M. R., & Gurunathan, B. A. (2019). Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. Journal of Energy Storage, 21, 18-31. doi:10.1016/j.est.2018.11.008

Dhaidan, N. S., Khodadadi, J. M., Al-Hattab, T. A., & Al-Mashat, S. M. (2013). Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67, 455-468. doi:10.1016/j.ijheatmasstransfer.2013.08.002

Babapoor, A., & Karimi, G. (2015). Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization. Applied Thermal Engineering, 90, 945-951. doi:10.1016/j.applthermaleng.2015.07.083

Shaikh, S., Lafdi, K., & Hallinan, K. (2008). Carbon nanoadditives to enhance latent energy storage of phase change materials. Journal of Applied Physics, 103(9), 094302. doi:10.1063/1.2903538

Kant, K., Shukla, A., Sharma, A., & Henry Biwole, P. (2017). Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Solar Energy, 146, 453-463. doi:10.1016/j.solener.2017.03.013

Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191. doi:10.1021/i160003a005

Timofeeva, E. V., Routbort, J. L., & Singh, D. (2009). Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics, 106(1), 014304. doi:10.1063/1.3155999

Shi, X., Jaryani, P., Amiri, A., Rahimi, A., & Malekshah, E. H. (2019). Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect. Powder Technology, 346, 160-170. doi:10.1016/j.powtec.2018.12.071

Mousavi Ajarostaghi, S. S., Poncet, S., Sedighi, K., & Aghajani Delavar, M. (2019). Numerical Modeling of the Melting Process in a Shell and Coil Tube Ice Storage System for Air-Conditioning Application. Applied Sciences, 9(13), 2726. doi:10.3390/app9132726

Afsharpanah, F., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1317-3

Pakzad, K., Mousavi Ajarostaghi, S. S., & Sedighi, K. (2019). Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Applied Sciences, 1(10). doi:10.1007/s42452-019-1316-4

Mousavi Ajarostaghi, S. S., Sedighi, K., Aghajani Delavar, M., & Poncet, S. (2020). Numerical Study of a Horizontal and Vertical Shell and Tube Ice Storage Systems Considering Three Types of Tube. Applied Sciences, 10(3), 1059. doi:10.3390/app10031059

Mousavi Ajarostaghi, S. S., Sedighi, K., Delavar, M. A., & Poncet, S. (2019). Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Applied Sciences, 2(1). doi:10.1007/s42452-019-1912-3

Ajarostaghi, S. S. M., Delavar, M. A., & Dolati, A. (2017). NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES. Heat Transfer Research, 48(16), 1515-1529. doi:10.1615/heattransres.2017015549

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem