Mostrar el registro sencillo del ítem
dc.contributor.author | Shahangian, Navid | es_ES |
dc.contributor.author | Sharifian, Leila | es_ES |
dc.contributor.author | Uehara, Kazuhiro | es_ES |
dc.contributor.author | Noguchi, Yasushi | es_ES |
dc.contributor.author | Martínez-García, María | es_ES |
dc.contributor.author | Marti-Aldaravi, Pedro | es_ES |
dc.contributor.author | Payri, Raul | es_ES |
dc.date.accessioned | 2021-05-21T03:32:13Z | |
dc.date.available | 2021-05-21T03:32:13Z | |
dc.date.issued | 2020-07-05 | es_ES |
dc.identifier.issn | 1359-4311 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166593 | |
dc.description.abstract | [EN] In the field of Internal Combustion Engines (ICE) the usage of Gasoline Direct fuel injectors (GDi) with gasoline, iso-octane, ethanol (or other alternative fuels) has gained relevance in the past years with the goal of reducing fuel consumption and thus emissions. In this type of direct injections, the injector plays a major role in defining the air-fuel mixture quality. Nevertheless, the study of the phenomena inside the nozzle becomes a challenge due to its reduced size, high flow velocities and multiphase flow nature. Computational Fluid Dynamics (CFD) tools allow gaining valuable insight and understanding into such complex flow physics. Therefore, the objective of this work is the development of a predictive methodology for simulating two GDi nozzles. Unsteady Reynolds-Averaged Navier Stokes (URANS) is chosen for modeling the turbulence. The Homogeneous Relaxation Model (HRM) is used to investigate the possible phase change of the fuel through cavitation or flash boiling. Different injection conditions are simulated and results are compared against experimental data of mass flow and momentum rate for validation. CFD is able to accurately predict steady state values, but transients are very dependent on the initial and boundary conditions imposed on the model. A methodology for their definition is proposed and tested, and with it the accuracy in the prediction of the opening transient is improved. | es_ES |
dc.description.sponsorship | Authors would like to acknowledge Toyota Motor Corporation (TMC) for providing the funds for this project. Authors would like to thank the "Fundacion del Centro de Supercomputacion de Castilla y Leon" (FCSCL) and "ACT now HPC Cloud Cluster" for allowing the use of their clusters to perform part of the simulations carried out in this work. Additionally, the Ph.D. student Maria Martinez has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Thermal Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | GDi | es_ES |
dc.subject | CFD | es_ES |
dc.subject | Nozzle flow | es_ES |
dc.subject | Transient | es_ES |
dc.subject | Predictive model | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Transient nozzle flow simulations of gasoline direct fuel injectors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.applthermaleng.2020.115356 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F118/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Shahangian, N.; Sharifian, L.; Uehara, K.; Noguchi, Y.; Martínez-García, M.; Marti-Aldaravi, P.; Payri, R. (2020). Transient nozzle flow simulations of gasoline direct fuel injectors. Applied Thermal Engineering. 175:1-12. https://doi.org/10.1016/j.applthermaleng.2020.115356 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.applthermaleng.2020.115356 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.relation.pasarela | S\410990 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Toyota Motor Europe | es_ES |
dc.description.references | Liu, Q., Fu, J., Zhu, G., Li, Q., Liu, J., Duan, X., & Guo, Q. (2018). Comparative study on thermodynamics, combustion and emissions of turbocharged gasoline direct injection (GDI) engine under NEDC and steady-state conditions. Energy Conversion and Management, 169, 111-123. doi:10.1016/j.enconman.2018.05.047 | es_ES |
dc.description.references | B. Befrui, G. Corbinelli, M. D’Onofrio, D. Varble, GDI Multi-Hole Injector Internal Flow and Spray Analysis, SAE Technical Paper 2011-01-1211 (2011). doi:10.4271/2011-01-1211. | es_ES |
dc.description.references | Payri, R., Gimeno, J., Marti-Aldaravi, P., & Vaquerizo, D. (2016). INTERNAL FLOW CHARACTERIZATION ON AN ECN GDi INJECTOR. Atomization and Sprays, 26(9), 889-919. doi:10.1615/atomizspr.2015013930 | es_ES |
dc.description.references | Duke, D. J., Kastengren, A. L., Matusik, K. E., Swantek, A. B., Powell, C. F., Payri, R., … Pickett, L. M. (2017). Internal and near nozzle measurements of Engine Combustion Network «Spray G» gasoline direct injectors. Experimental Thermal and Fluid Science, 88, 608-621. doi:10.1016/j.expthermflusci.2017.07.015 | es_ES |
dc.description.references | Zhao, L., Wang, M., Wang, P., Zhu, X., Qiu, Q., & Shen, S. (2018). Experimental study on the internal flow field and spray characteristics of hollow nozzle. Applied Thermal Engineering, 144, 757-768. doi:10.1016/j.applthermaleng.2018.06.047 | es_ES |
dc.description.references | Saha, K., Som, S., Battistoni, M., Li, Y., Pomraning, E., & Senecal, P. K. (2016). Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients. SAE International Journal of Engines, 9(2), 1230-1240. doi:10.4271/2016-01-0870 | es_ES |
dc.description.references | S.E. Parrish, Evaluation of Liquid and Vapor Penetration of Sprays from a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions, SAE Technical Paper 2014–04-01 7 (2) (2014) 1017–1033. doi:10.4271/2014-01-1409. | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Vaquerizo, D. (2017). ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis. Applied Thermal Engineering, 112, 304-316. doi:10.1016/j.applthermaleng.2016.10.023 | es_ES |
dc.description.references | K. Saha, S. Som, M. Battistoni, Y. Li, S. Quan, P.K. Senecal, Modeling of Internal and Near-nozzle Flow for a GDI Fuel Injector, in: Proceedings of the ASME 2015 Internal Combustion Engine Division 138 (September) (2015) 1–13. doi:10.1115/ICEF2015-1112. | es_ES |
dc.description.references | Baldwin, E. T., Grover, R. O., Parrish, S. E., Duke, D. J., Matusik, K. E., Powell, C. F., … Schmidt, D. P. (2016). String flash-boiling in gasoline direct injection simulations with transient needle motion. International Journal of Multiphase Flow, 87, 90-101. doi:10.1016/j.ijmultiphaseflow.2016.09.004 | es_ES |
dc.description.references | A. Montanaro, L. Allocca, M. Lazzaro, Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions (2017). doi:10.4271/2017-01-2319. | es_ES |
dc.description.references | Huang, Y., Huang, S., Huang, R., & Hong, G. (2016). Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions. Energy Conversion and Management, 108, 68-77. doi:10.1016/j.enconman.2015.10.081 | es_ES |
dc.description.references | Yang, S., Li, X., Hung, D. L. S., Arai, M., & Xu, M. (2019). In-nozzle flash boiling flow of multi-component fuel and its effect on near-nozzle spray. Fuel, 252, 55-67. doi:10.1016/j.fuel.2019.04.104 | es_ES |
dc.description.references | zamani, hamed, hosseini, vahid, Afshin, H., Allocca, L., … Baloo, M. (2016). Large Eddy Simulation of GDI Single-hole and Multi-hole Injector Sprays with Comparison of Numerical Break-up Models and Coefficients. Journal of Applied Fluid Mechanics, 9(2), 1013-1022. doi:10.18869/acadpub.jafm.68.225.22889 | es_ES |
dc.description.references | Befrui, B., Corbinelli, G., Spiekermann, P., Shost, M., & Lai, M.-C. (2012). Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray. SAE International Journal of Fuels and Lubricants, 5(2), 620-636. doi:10.4271/2012-01-0392 | es_ES |
dc.description.references | Yue, Z., Battistoni, M., & Som, S. (2019). Spray characterization for engine combustion network Spray G injector using high-fidelity simulation with detailed injector geometry. International Journal of Engine Research, 21(1), 226-238. doi:10.1177/1468087419872398 | es_ES |
dc.description.references | M. Shost, M.-C. Lai, B. Befrui, P. Spiekermann, D.L. Varble, GDi Nozzle parameter studies using LES and spray imaging methods, in: SAE Technical Paper 2014-01-1434, vol. 1, 2014. doi:10.4271/2014-01-1434. | es_ES |
dc.description.references | Wang, B., Badawy, T., Hutchins, P., Tu, P., Xu, H., & Zhang, X. (2017). Numerical Investigation of the Deposit Effect on GDI Injector Nozzle Flow. Energy Procedia, 105, 1671-1676. doi:10.1016/j.egypro.2017.03.545 | es_ES |
dc.description.references | Kong, S. C., Senecal, P. K., & Reitz, R. D. (1999). Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines. Oil & Gas Science and Technology, 54(2), 197-204. doi:10.2516/ogst:1999015 | es_ES |
dc.description.references | Fan, L., & Reitz, R. D. (2000). SPRAY AND COMBUSTION MODELING IN GASOLINE DIRECT-INJECTION ENGINES. Atomization and Sprays, 10(3-5), 219-249. doi:10.1615/atomizspr.v10.i3-5.30 | es_ES |
dc.description.references | Senecal, P. K., Pomraning, E., Xue, Q., Som, S., Banerjee, S., Hu, B., … Deur, J. M. (2014). Large Eddy Simulation of Vaporizing Sprays Considering Multi-Injection Averaging and Grid-Convergent Mesh Resolution. Journal of Engineering for Gas Turbines and Power, 136(11). doi:10.1115/1.4027449 | es_ES |
dc.description.references | M. Battistoni, G.M. Magnotti, C.L. Genzale, M. Arienti, K.E. Matusik, D.J. Duke, J. Giraldo, J. Ilavsky, A.L. Kastengren, C.F. Powell, P. Marti-Aldaravi, Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D, SAE Technical Paper (2018-01-0277) (2018) 1–15. doi:10.4271/2018-01-0277. | es_ES |
dc.description.references | Desantes, J. M., Garcia-Oliver, J. M., Pastor, J. M., & Pandal, A. (2016). A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS E-Y EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 26(7), 713-737. doi:10.1615/atomizspr.2015013285 | es_ES |
dc.description.references | K. Saha, P. Srivastava, S. Quan, P.K. Senecal, S. Som, Modeling the Dynamic Coupling of Internal Nozzle Flow and Spray Formation for Gasoline Direct Injection Applications, SAE Technical Paper (2018) 1–13doi:10.4271/2018-01-0314.Abstract. | es_ES |
dc.description.references | Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002 | es_ES |
dc.description.references | Saha, K., Som, S., & Battistoni, M. (2017). INVESTIGATION OF HOMOGENEOUS RELAXATION MODEL PARAMETERS AND THEIR IMPLICATIONS FOR GASOLINE INJECTORS. Atomization and Sprays, 27(4), 345-365. doi:10.1615/atomizspr.2017016338 | es_ES |
dc.description.references | R.O. Grover, D.J. Duke, K.E. Matusik, A.L. Kastengren, String Flash-Boiling in Flashing and Non-Flashing Gasoline Direction Injection Simulations with Transient Needle Motion University of Massachusetts Amherst General Motors Research and Development Energy Systems Division, Argonne National Laboratory, Lem, ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems (May) (2016). | es_ES |
dc.description.references | Battistoni, M., Som, S., & Powell, C. F. (2019). Highly resolved Eulerian simulations of fuel spray transients in single and multi-hole injectors: Nozzle flow and near-exit dynamics. Fuel, 251, 709-729. doi:10.1016/j.fuel.2019.04.076 | es_ES |
dc.description.references | N. Shahangian, L. Sharifian, J. Miyagawa, S. Bergamini, K. Uehara, Y. Noguchi, P. Marti-aldaravi, M. Martinez, R. Payri, Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector, SAE Technical Paper Series (2019). doi:10.4271/2019-24-0031. | es_ES |
dc.description.references | E. Giannadakis, M. Gavaises, A. Theodorakakos, The influence of variable fuel properties in high-pressure diesel injectors, SAE Technical Paper 2009-01-0832 (2009). | es_ES |
dc.description.references | R. Payri, J. Gimeno, P. Marti-aldaravi, M. Martínez, Nozzle Flow Simulation of GDi for Measuring Near-Field Spray Angle and Plume Direction, SAE Technical Paper 2019-01-0280 (2019) 1–11doi:10.4271/2019-01-0280. | es_ES |
dc.description.references | Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076 | es_ES |
dc.description.references | Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012 | es_ES |
dc.description.references | P. Marti-Aldaravi, K. Saha, J. Gimeno, S. Som, Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts, SAE Technical Papers 2017-24-01 (2017). doi:10.4271/2017-24-0101. | es_ES |
dc.description.references | Q. Xue, S. Som, M. Battistoni, D.E. Longman, H. Zhao, P.K. Senecal, E. Pomraning, Three-dimensional Simulations of the transient internal flow in a diesel injector: effects of needle movement, ILASS Americas (2013). | es_ES |
dc.description.references | Xue, Q., Battistoni, M., Som, S., Quan, S., Senecal, P. K., Pomraning, E., & Schmidt, D. (2014). Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data. SAE International Journal of Engines, 7(2), 1061-1072. doi:10.4271/2014-01-1425 | es_ES |
dc.description.references | Battistoni, M., Xue, Q., Som, S., & Pomraning, E. (2014). Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector. SAE International Journal of Fuels and Lubricants, 7(1), 167-182. doi:10.4271/2014-01-1426 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Martínez-López, J. (2012). Using one-dimensional modeling to analyse the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Detailed injection system model. Energy Conversion and Management, 54(1), 90-99. doi:10.1016/j.enconman.2011.10.004 | es_ES |