- -

Transient nozzle flow simulations of gasoline direct fuel injectors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transient nozzle flow simulations of gasoline direct fuel injectors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shahangian, Navid es_ES
dc.contributor.author Sharifian, Leila es_ES
dc.contributor.author Uehara, Kazuhiro es_ES
dc.contributor.author Noguchi, Yasushi es_ES
dc.contributor.author Martínez-García, María es_ES
dc.contributor.author Marti-Aldaravi, Pedro es_ES
dc.contributor.author Payri, Raul es_ES
dc.date.accessioned 2021-05-21T03:32:13Z
dc.date.available 2021-05-21T03:32:13Z
dc.date.issued 2020-07-05 es_ES
dc.identifier.issn 1359-4311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166593
dc.description.abstract [EN] In the field of Internal Combustion Engines (ICE) the usage of Gasoline Direct fuel injectors (GDi) with gasoline, iso-octane, ethanol (or other alternative fuels) has gained relevance in the past years with the goal of reducing fuel consumption and thus emissions. In this type of direct injections, the injector plays a major role in defining the air-fuel mixture quality. Nevertheless, the study of the phenomena inside the nozzle becomes a challenge due to its reduced size, high flow velocities and multiphase flow nature. Computational Fluid Dynamics (CFD) tools allow gaining valuable insight and understanding into such complex flow physics. Therefore, the objective of this work is the development of a predictive methodology for simulating two GDi nozzles. Unsteady Reynolds-Averaged Navier Stokes (URANS) is chosen for modeling the turbulence. The Homogeneous Relaxation Model (HRM) is used to investigate the possible phase change of the fuel through cavitation or flash boiling. Different injection conditions are simulated and results are compared against experimental data of mass flow and momentum rate for validation. CFD is able to accurately predict steady state values, but transients are very dependent on the initial and boundary conditions imposed on the model. A methodology for their definition is proposed and tested, and with it the accuracy in the prediction of the opening transient is improved. es_ES
dc.description.sponsorship Authors would like to acknowledge Toyota Motor Corporation (TMC) for providing the funds for this project. Authors would like to thank the "Fundacion del Centro de Supercomputacion de Castilla y Leon" (FCSCL) and "ACT now HPC Cloud Cluster" for allowing the use of their clusters to perform part of the simulations carried out in this work. Additionally, the Ph.D. student Maria Martinez has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Thermal Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject GDi es_ES
dc.subject CFD es_ES
dc.subject Nozzle flow es_ES
dc.subject Transient es_ES
dc.subject Predictive model es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Transient nozzle flow simulations of gasoline direct fuel injectors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.applthermaleng.2020.115356 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F118/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Shahangian, N.; Sharifian, L.; Uehara, K.; Noguchi, Y.; Martínez-García, M.; Marti-Aldaravi, P.; Payri, R. (2020). Transient nozzle flow simulations of gasoline direct fuel injectors. Applied Thermal Engineering. 175:1-12. https://doi.org/10.1016/j.applthermaleng.2020.115356 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.applthermaleng.2020.115356 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.relation.pasarela S\410990 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Toyota Motor Europe es_ES
dc.description.references Liu, Q., Fu, J., Zhu, G., Li, Q., Liu, J., Duan, X., & Guo, Q. (2018). Comparative study on thermodynamics, combustion and emissions of turbocharged gasoline direct injection (GDI) engine under NEDC and steady-state conditions. Energy Conversion and Management, 169, 111-123. doi:10.1016/j.enconman.2018.05.047 es_ES
dc.description.references B. Befrui, G. Corbinelli, M. D’Onofrio, D. Varble, GDI Multi-Hole Injector Internal Flow and Spray Analysis, SAE Technical Paper 2011-01-1211 (2011). doi:10.4271/2011-01-1211. es_ES
dc.description.references Payri, R., Gimeno, J., Marti-Aldaravi, P., & Vaquerizo, D. (2016). INTERNAL FLOW CHARACTERIZATION ON AN ECN GDi INJECTOR. Atomization and Sprays, 26(9), 889-919. doi:10.1615/atomizspr.2015013930 es_ES
dc.description.references Duke, D. J., Kastengren, A. L., Matusik, K. E., Swantek, A. B., Powell, C. F., Payri, R., … Pickett, L. M. (2017). Internal and near nozzle measurements of Engine Combustion Network «Spray G» gasoline direct injectors. Experimental Thermal and Fluid Science, 88, 608-621. doi:10.1016/j.expthermflusci.2017.07.015 es_ES
dc.description.references Zhao, L., Wang, M., Wang, P., Zhu, X., Qiu, Q., & Shen, S. (2018). Experimental study on the internal flow field and spray characteristics of hollow nozzle. Applied Thermal Engineering, 144, 757-768. doi:10.1016/j.applthermaleng.2018.06.047 es_ES
dc.description.references Saha, K., Som, S., Battistoni, M., Li, Y., Pomraning, E., & Senecal, P. K. (2016). Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients. SAE International Journal of Engines, 9(2), 1230-1240. doi:10.4271/2016-01-0870 es_ES
dc.description.references S.E. Parrish, Evaluation of Liquid and Vapor Penetration of Sprays from a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions, SAE Technical Paper 2014–04-01 7 (2) (2014) 1017–1033. doi:10.4271/2014-01-1409. es_ES
dc.description.references Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Vaquerizo, D. (2017). ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis. Applied Thermal Engineering, 112, 304-316. doi:10.1016/j.applthermaleng.2016.10.023 es_ES
dc.description.references K. Saha, S. Som, M. Battistoni, Y. Li, S. Quan, P.K. Senecal, Modeling of Internal and Near-nozzle Flow for a GDI Fuel Injector, in: Proceedings of the ASME 2015 Internal Combustion Engine Division 138 (September) (2015) 1–13. doi:10.1115/ICEF2015-1112. es_ES
dc.description.references Baldwin, E. T., Grover, R. O., Parrish, S. E., Duke, D. J., Matusik, K. E., Powell, C. F., … Schmidt, D. P. (2016). String flash-boiling in gasoline direct injection simulations with transient needle motion. International Journal of Multiphase Flow, 87, 90-101. doi:10.1016/j.ijmultiphaseflow.2016.09.004 es_ES
dc.description.references A. Montanaro, L. Allocca, M. Lazzaro, Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions (2017). doi:10.4271/2017-01-2319. es_ES
dc.description.references Huang, Y., Huang, S., Huang, R., & Hong, G. (2016). Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions. Energy Conversion and Management, 108, 68-77. doi:10.1016/j.enconman.2015.10.081 es_ES
dc.description.references Yang, S., Li, X., Hung, D. L. S., Arai, M., & Xu, M. (2019). In-nozzle flash boiling flow of multi-component fuel and its effect on near-nozzle spray. Fuel, 252, 55-67. doi:10.1016/j.fuel.2019.04.104 es_ES
dc.description.references zamani, hamed, hosseini, vahid, Afshin, H., Allocca, L., … Baloo, M. (2016). Large Eddy Simulation of GDI Single-hole and Multi-hole Injector Sprays with Comparison of Numerical Break-up Models and Coefficients. Journal of Applied Fluid Mechanics, 9(2), 1013-1022. doi:10.18869/acadpub.jafm.68.225.22889 es_ES
dc.description.references Befrui, B., Corbinelli, G., Spiekermann, P., Shost, M., & Lai, M.-C. (2012). Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray. SAE International Journal of Fuels and Lubricants, 5(2), 620-636. doi:10.4271/2012-01-0392 es_ES
dc.description.references Yue, Z., Battistoni, M., & Som, S. (2019). Spray characterization for engine combustion network Spray G injector using high-fidelity simulation with detailed injector geometry. International Journal of Engine Research, 21(1), 226-238. doi:10.1177/1468087419872398 es_ES
dc.description.references M. Shost, M.-C. Lai, B. Befrui, P. Spiekermann, D.L. Varble, GDi Nozzle parameter studies using LES and spray imaging methods, in: SAE Technical Paper 2014-01-1434, vol. 1, 2014. doi:10.4271/2014-01-1434. es_ES
dc.description.references Wang, B., Badawy, T., Hutchins, P., Tu, P., Xu, H., & Zhang, X. (2017). Numerical Investigation of the Deposit Effect on GDI Injector Nozzle Flow. Energy Procedia, 105, 1671-1676. doi:10.1016/j.egypro.2017.03.545 es_ES
dc.description.references Kong, S. C., Senecal, P. K., & Reitz, R. D. (1999). Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines. Oil & Gas Science and Technology, 54(2), 197-204. doi:10.2516/ogst:1999015 es_ES
dc.description.references Fan, L., & Reitz, R. D. (2000). SPRAY AND COMBUSTION MODELING IN GASOLINE DIRECT-INJECTION ENGINES. Atomization and Sprays, 10(3-5), 219-249. doi:10.1615/atomizspr.v10.i3-5.30 es_ES
dc.description.references Senecal, P. K., Pomraning, E., Xue, Q., Som, S., Banerjee, S., Hu, B., … Deur, J. M. (2014). Large Eddy Simulation of Vaporizing Sprays Considering Multi-Injection Averaging and Grid-Convergent Mesh Resolution. Journal of Engineering for Gas Turbines and Power, 136(11). doi:10.1115/1.4027449 es_ES
dc.description.references M. Battistoni, G.M. Magnotti, C.L. Genzale, M. Arienti, K.E. Matusik, D.J. Duke, J. Giraldo, J. Ilavsky, A.L. Kastengren, C.F. Powell, P. Marti-Aldaravi, Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D, SAE Technical Paper (2018-01-0277) (2018) 1–15. doi:10.4271/2018-01-0277. es_ES
dc.description.references Desantes, J. M., Garcia-Oliver, J. M., Pastor, J. M., & Pandal, A. (2016). A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS E-Y EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 26(7), 713-737. doi:10.1615/atomizspr.2015013285 es_ES
dc.description.references K. Saha, P. Srivastava, S. Quan, P.K. Senecal, S. Som, Modeling the Dynamic Coupling of Internal Nozzle Flow and Spray Formation for Gasoline Direct Injection Applications, SAE Technical Paper (2018) 1–13doi:10.4271/2018-01-0314.Abstract. es_ES
dc.description.references Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002 es_ES
dc.description.references Saha, K., Som, S., & Battistoni, M. (2017). INVESTIGATION OF HOMOGENEOUS RELAXATION MODEL PARAMETERS AND THEIR IMPLICATIONS FOR GASOLINE INJECTORS. Atomization and Sprays, 27(4), 345-365. doi:10.1615/atomizspr.2017016338 es_ES
dc.description.references R.O. Grover, D.J. Duke, K.E. Matusik, A.L. Kastengren, String Flash-Boiling in Flashing and Non-Flashing Gasoline Direction Injection Simulations with Transient Needle Motion University of Massachusetts Amherst General Motors Research and Development Energy Systems Division, Argonne National Laboratory, Lem, ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems (May) (2016). es_ES
dc.description.references Battistoni, M., Som, S., & Powell, C. F. (2019). Highly resolved Eulerian simulations of fuel spray transients in single and multi-hole injectors: Nozzle flow and near-exit dynamics. Fuel, 251, 709-729. doi:10.1016/j.fuel.2019.04.076 es_ES
dc.description.references N. Shahangian, L. Sharifian, J. Miyagawa, S. Bergamini, K. Uehara, Y. Noguchi, P. Marti-aldaravi, M. Martinez, R. Payri, Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector, SAE Technical Paper Series (2019). doi:10.4271/2019-24-0031. es_ES
dc.description.references E. Giannadakis, M. Gavaises, A. Theodorakakos, The influence of variable fuel properties in high-pressure diesel injectors, SAE Technical Paper 2009-01-0832 (2009). es_ES
dc.description.references R. Payri, J. Gimeno, P. Marti-aldaravi, M. Martínez, Nozzle Flow Simulation of GDi for Measuring Near-Field Spray Angle and Plume Direction, SAE Technical Paper 2019-01-0280 (2019) 1–11doi:10.4271/2019-01-0280. es_ES
dc.description.references Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076 es_ES
dc.description.references Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012 es_ES
dc.description.references P. Marti-Aldaravi, K. Saha, J. Gimeno, S. Som, Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts, SAE Technical Papers 2017-24-01 (2017). doi:10.4271/2017-24-0101. es_ES
dc.description.references Q. Xue, S. Som, M. Battistoni, D.E. Longman, H. Zhao, P.K. Senecal, E. Pomraning, Three-dimensional Simulations of the transient internal flow in a diesel injector: effects of needle movement, ILASS Americas (2013). es_ES
dc.description.references Xue, Q., Battistoni, M., Som, S., Quan, S., Senecal, P. K., Pomraning, E., & Schmidt, D. (2014). Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data. SAE International Journal of Engines, 7(2), 1061-1072. doi:10.4271/2014-01-1425 es_ES
dc.description.references Battistoni, M., Xue, Q., Som, S., & Pomraning, E. (2014). Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector. SAE International Journal of Fuels and Lubricants, 7(1), 167-182. doi:10.4271/2014-01-1426 es_ES
dc.description.references Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Martínez-López, J. (2012). Using one-dimensional modeling to analyse the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Detailed injection system model. Energy Conversion and Management, 54(1), 90-99. doi:10.1016/j.enconman.2011.10.004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem