- -

A systemic methodology for the reduction of complexity of the balanced scorecard in the manufacturing environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A systemic methodology for the reduction of complexity of the balanced scorecard in the manufacturing environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-Márquez, Rafael es_ES
dc.contributor.author Albarracín Guillem, José Miguel es_ES
dc.contributor.author Vicens Salort, Eduardo es_ES
dc.contributor.author Jabaloyes Vivas, José Manuel es_ES
dc.date.accessioned 2021-05-21T03:32:16Z
dc.date.available 2021-05-21T03:32:16Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166594
dc.description.abstract [EN] The main objective of this paper is to develop and validate a methodology to select the most important key performance indicators from the balanced scorecard. The methodology uses and validates the implicit systemic hypothesis in the balanced scorecard model, together with a qualitative and statistical analysis. It helps to determine a small set of indicators that summarizes the company's performance. The method was tested using actual data of 3 complete years of a multinational manufacturing company's balanced scorecard. The results showed that the scorecard can be summarized in six metrics, one for each dimension, from an initial scorecard composed of 90 indicators. In addition to reducing complexity, the method tackles the hitherto unresolved issues of the analysis of the trade-offs between different dimensions and the lagged effects between metrics. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Cogent Business & Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Balanced Scorecard (BSC) es_ES
dc.subject Strategy es_ES
dc.subject Policy deployment es_ES
dc.subject Lagged time series es_ES
dc.subject Key Performance Indicators (KPIs) es_ES
dc.subject Operating System (OS) es_ES
dc.subject Dynamic principal component analysis (DiPCA) es_ES
dc.subject Correlation analysis es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title A systemic methodology for the reduction of complexity of the balanced scorecard in the manufacturing environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/23311975.2020.1720944 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Sánchez-Márquez, R.; Albarracín Guillem, JM.; Vicens Salort, E.; Jabaloyes Vivas, JM. (2020). A systemic methodology for the reduction of complexity of the balanced scorecard in the manufacturing environment. Cogent Business & Management. 7(1):1-18. https://doi.org/10.1080/23311975.2020.1720944 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/23311975.2020.1720944 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2331-1975 es_ES
dc.relation.pasarela S\409011 es_ES
dc.description.references Anand, M., Sahay, B. S., & Saha, S. (2005). Balanced Scorecard in Indian Companies. Vikalpa: The Journal for Decision Makers, 30(2), 11-26. doi:10.1177/0256090920050202 es_ES
dc.description.references Banker, R. D., Chang, H., Janakiraman, S. N., & Konstans, C. (2004). A balanced scorecard analysis of performance metrics. European Journal of Operational Research, 154(2), 423-436. doi:10.1016/s0377-2217(03)00179-6 es_ES
dc.description.references Bansal, A., Kauffman, R. J., & Weitz, R. R. (1993). Comparing the Modeling Performance of Regression and Neural Networks as Data Quality Varies: A Business Value Approach. Journal of Management Information Systems, 10(1), 11-32. doi:10.1080/07421222.1993.11517988 es_ES
dc.description.references Boj, J. J., Rodriguez-Rodriguez, R., & Alfaro-Saiz, J.-J. (2014). An ANP-multi-criteria-based methodology to link intangible assets and organizational performance in a Balanced Scorecard context. Decision Support Systems, 68, 98-110. doi:10.1016/j.dss.2014.10.002 es_ES
dc.description.references Chytas, P., Glykas, M., & Valiris, G. (2011). A proactive balanced scorecard. International Journal of Information Management, 31(5), 460-468. doi:10.1016/j.ijinfomgt.2010.12.007 es_ES
dc.description.references Dong, Y., & Qin, S. J. (2018). A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 67, 1-11. doi:10.1016/j.jprocont.2017.05.002 es_ES
dc.description.references Ferenc, A. (2011). Balanced scorecard measurement applications at a car manufacturer supplier company. https://pdfs.semanticscholar.org/f10e/409533c49dd2934ace78405126978302ab96.pdf es_ES
dc.description.references Fisher, R. A. (1992). Statistical Methods for Research Workers. Breakthroughs in Statistics, 66-70. doi:10.1007/978-1-4612-4380-9_6 es_ES
dc.description.references Gans, D. J. (1981). Corrected and Extended Tables for Tukey’s Quick Test. Technometrics, 23(2), 193-195. doi:10.1080/00401706.1981.10486265 es_ES
dc.description.references Grillo, H., Campuzano-Bolarin, F., & Mula, J. (2018). Modelling performance management measures through statistics and system dynamics-based simulation. Dirección y Organización, (65), 20-35. doi:10.37610/dyo.v0i65.526 es_ES
dc.description.references Gurrea, V., Alfaro-Saiz, J.-J., Rodriguez, R., & Verdecho, M. J. (2014). Application of fuzzy logic in performance management: a literature review. International Journal of Production Management and Engineering, 2(2), 93. doi:10.4995/ijpme.2014.1859 es_ES
dc.description.references Hoque, Z. (2014). 20 years of studies on the balanced scorecard: Trends, accomplishments, gaps and opportunities for future research. The British Accounting Review, 46(1), 33-59. doi:10.1016/j.bar.2013.10.003 es_ES
dc.description.references Junior, I. C. A., Marqui, A. C. & Martins, R. A. (2008). Multiple case study on balanced scorecard implementation in sugarcane companies. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.3364&rep=rep1&type=pdf es_ES
dc.description.references Kaplan, R. S. (2009). Conceptual Foundations of the Balanced Scorecard. Handbooks of Management Accounting Research, 1253-1269. doi:10.1016/s1751-3243(07)03003-9 es_ES
dc.description.references Ku, W., Storer, R. H., & Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30(1), 179-196. doi:10.1016/0169-7439(95)00076-3 es_ES
dc.description.references Malmi, T. (2001). Balanced scorecards in Finnish companies: A research note. Management Accounting Research, 12(2), 207-220. doi:10.1006/mare.2000.0154 es_ES
dc.description.references Morard, B., Stancu, A. & Jeannette, C. (2013). Time evolution analysis and forecast of key performance indicators in a balanced scorecard. Global Journal of Business Research, 7(2), 9–27. es_ES
dc.description.references Noerreklit, H., & Schoenfeld, H.-M. W. (2000). Controlling Multinational Companies: An Attempt to Analyze Some Unresolved Issues. The International Journal of Accounting, 35(3), 415-430. doi:10.1016/s0020-7063(00)00064-9 es_ES
dc.description.references Rodriguez, R. R., Saiz, J. J. A., & Bas, A. O. (2009). Quantitative relationships between key performance indicators for supporting decision-making processes. Computers in Industry, 60(2), 104-113. doi:10.1016/j.compind.2008.09.002 es_ES
dc.description.references Sanchez-Marquez, R., Albarracin Guillem, J. M., Vicens-Salort, E., & Jabaloyes Vivas, J. (2018). A statistical system management method to tackle data uncertainty when using key performance indicators of the balanced scorecard. Journal of Manufacturing Systems, 48, 166-179. doi:10.1016/j.jmsy.2018.07.010 es_ES
dc.description.references Sánchez Márquez, R., Albarracín Guillem, J. M., Vicens-Salort, E., & Jabaloyes Vivas, J. (2018). Intellectual Capital and Balanced Scorecard: impact of Learning and Development Programs using Key Performance Indicators in Manufacturing Environment. Dirección y Organización, (66), 34-49. doi:10.37610/dyo.v0i66.534 es_ES
dc.description.references Verdecho, M.-J., Alfaro-Saiz, J.-J., & Rodriguez-Rodriguez, R. (2014). A Performance Management Framework for Managing Sustainable Collaborative Enterprise Networks. Lecture Notes in Computer Science, 546-554. doi:10.1007/978-3-662-44745-1_54 es_ES
dc.description.references Walczak, S., & Cerpa, N. (1999). Heuristic principles for the design of artificial neural networks. Information and Software Technology, 41(2), 107-117. doi:10.1016/s0950-5849(98)00116-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem