Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Márquez, Rafael | es_ES |
dc.contributor.author | Albarracín Guillem, José Miguel | es_ES |
dc.contributor.author | Vicens Salort, Eduardo | es_ES |
dc.contributor.author | Jabaloyes Vivas, José Manuel | es_ES |
dc.date.accessioned | 2021-05-21T03:32:16Z | |
dc.date.available | 2021-05-21T03:32:16Z | |
dc.date.issued | 2020-01-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166594 | |
dc.description.abstract | [EN] The main objective of this paper is to develop and validate a methodology to select the most important key performance indicators from the balanced scorecard. The methodology uses and validates the implicit systemic hypothesis in the balanced scorecard model, together with a qualitative and statistical analysis. It helps to determine a small set of indicators that summarizes the company's performance. The method was tested using actual data of 3 complete years of a multinational manufacturing company's balanced scorecard. The results showed that the scorecard can be summarized in six metrics, one for each dimension, from an initial scorecard composed of 90 indicators. In addition to reducing complexity, the method tackles the hitherto unresolved issues of the analysis of the trade-offs between different dimensions and the lagged effects between metrics. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Cogent Business & Management | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Balanced Scorecard (BSC) | es_ES |
dc.subject | Strategy | es_ES |
dc.subject | Policy deployment | es_ES |
dc.subject | Lagged time series | es_ES |
dc.subject | Key Performance Indicators (KPIs) | es_ES |
dc.subject | Operating System (OS) | es_ES |
dc.subject | Dynamic principal component analysis (DiPCA) | es_ES |
dc.subject | Correlation analysis | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | A systemic methodology for the reduction of complexity of the balanced scorecard in the manufacturing environment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/23311975.2020.1720944 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Sánchez-Márquez, R.; Albarracín Guillem, JM.; Vicens Salort, E.; Jabaloyes Vivas, JM. (2020). A systemic methodology for the reduction of complexity of the balanced scorecard in the manufacturing environment. Cogent Business & Management. 7(1):1-18. https://doi.org/10.1080/23311975.2020.1720944 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/23311975.2020.1720944 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2331-1975 | es_ES |
dc.relation.pasarela | S\409011 | es_ES |
dc.description.references | Anand, M., Sahay, B. S., & Saha, S. (2005). Balanced Scorecard in Indian Companies. Vikalpa: The Journal for Decision Makers, 30(2), 11-26. doi:10.1177/0256090920050202 | es_ES |
dc.description.references | Banker, R. D., Chang, H., Janakiraman, S. N., & Konstans, C. (2004). A balanced scorecard analysis of performance metrics. European Journal of Operational Research, 154(2), 423-436. doi:10.1016/s0377-2217(03)00179-6 | es_ES |
dc.description.references | Bansal, A., Kauffman, R. J., & Weitz, R. R. (1993). Comparing the Modeling Performance of Regression and Neural Networks as Data Quality Varies: A Business Value Approach. Journal of Management Information Systems, 10(1), 11-32. doi:10.1080/07421222.1993.11517988 | es_ES |
dc.description.references | Boj, J. J., Rodriguez-Rodriguez, R., & Alfaro-Saiz, J.-J. (2014). An ANP-multi-criteria-based methodology to link intangible assets and organizational performance in a Balanced Scorecard context. Decision Support Systems, 68, 98-110. doi:10.1016/j.dss.2014.10.002 | es_ES |
dc.description.references | Chytas, P., Glykas, M., & Valiris, G. (2011). A proactive balanced scorecard. International Journal of Information Management, 31(5), 460-468. doi:10.1016/j.ijinfomgt.2010.12.007 | es_ES |
dc.description.references | Dong, Y., & Qin, S. J. (2018). A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 67, 1-11. doi:10.1016/j.jprocont.2017.05.002 | es_ES |
dc.description.references | Ferenc, A. (2011). Balanced scorecard measurement applications at a car manufacturer supplier company. https://pdfs.semanticscholar.org/f10e/409533c49dd2934ace78405126978302ab96.pdf | es_ES |
dc.description.references | Fisher, R. A. (1992). Statistical Methods for Research Workers. Breakthroughs in Statistics, 66-70. doi:10.1007/978-1-4612-4380-9_6 | es_ES |
dc.description.references | Gans, D. J. (1981). Corrected and Extended Tables for Tukey’s Quick Test. Technometrics, 23(2), 193-195. doi:10.1080/00401706.1981.10486265 | es_ES |
dc.description.references | Grillo, H., Campuzano-Bolarin, F., & Mula, J. (2018). Modelling performance management measures through statistics and system dynamics-based simulation. Dirección y Organización, (65), 20-35. doi:10.37610/dyo.v0i65.526 | es_ES |
dc.description.references | Gurrea, V., Alfaro-Saiz, J.-J., Rodriguez, R., & Verdecho, M. J. (2014). Application of fuzzy logic in performance management: a literature review. International Journal of Production Management and Engineering, 2(2), 93. doi:10.4995/ijpme.2014.1859 | es_ES |
dc.description.references | Hoque, Z. (2014). 20 years of studies on the balanced scorecard: Trends, accomplishments, gaps and opportunities for future research. The British Accounting Review, 46(1), 33-59. doi:10.1016/j.bar.2013.10.003 | es_ES |
dc.description.references | Junior, I. C. A., Marqui, A. C. & Martins, R. A. (2008). Multiple case study on balanced scorecard implementation in sugarcane companies. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.3364&rep=rep1&type=pdf | es_ES |
dc.description.references | Kaplan, R. S. (2009). Conceptual Foundations of the Balanced Scorecard. Handbooks of Management Accounting Research, 1253-1269. doi:10.1016/s1751-3243(07)03003-9 | es_ES |
dc.description.references | Ku, W., Storer, R. H., & Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30(1), 179-196. doi:10.1016/0169-7439(95)00076-3 | es_ES |
dc.description.references | Malmi, T. (2001). Balanced scorecards in Finnish companies: A research note. Management Accounting Research, 12(2), 207-220. doi:10.1006/mare.2000.0154 | es_ES |
dc.description.references | Morard, B., Stancu, A. & Jeannette, C. (2013). Time evolution analysis and forecast of key performance indicators in a balanced scorecard. Global Journal of Business Research, 7(2), 9–27. | es_ES |
dc.description.references | Noerreklit, H., & Schoenfeld, H.-M. W. (2000). Controlling Multinational Companies: An Attempt to Analyze Some Unresolved Issues. The International Journal of Accounting, 35(3), 415-430. doi:10.1016/s0020-7063(00)00064-9 | es_ES |
dc.description.references | Rodriguez, R. R., Saiz, J. J. A., & Bas, A. O. (2009). Quantitative relationships between key performance indicators for supporting decision-making processes. Computers in Industry, 60(2), 104-113. doi:10.1016/j.compind.2008.09.002 | es_ES |
dc.description.references | Sanchez-Marquez, R., Albarracin Guillem, J. M., Vicens-Salort, E., & Jabaloyes Vivas, J. (2018). A statistical system management method to tackle data uncertainty when using key performance indicators of the balanced scorecard. Journal of Manufacturing Systems, 48, 166-179. doi:10.1016/j.jmsy.2018.07.010 | es_ES |
dc.description.references | Sánchez Márquez, R., Albarracín Guillem, J. M., Vicens-Salort, E., & Jabaloyes Vivas, J. (2018). Intellectual Capital and Balanced Scorecard: impact of Learning and Development Programs using Key Performance Indicators in Manufacturing Environment. Dirección y Organización, (66), 34-49. doi:10.37610/dyo.v0i66.534 | es_ES |
dc.description.references | Verdecho, M.-J., Alfaro-Saiz, J.-J., & Rodriguez-Rodriguez, R. (2014). A Performance Management Framework for Managing Sustainable Collaborative Enterprise Networks. Lecture Notes in Computer Science, 546-554. doi:10.1007/978-3-662-44745-1_54 | es_ES |
dc.description.references | Walczak, S., & Cerpa, N. (1999). Heuristic principles for the design of artificial neural networks. Information and Software Technology, 41(2), 107-117. doi:10.1016/s0950-5849(98)00116-5 | es_ES |