Mostrar el registro sencillo del ítem
dc.contributor.author | Urtiaga, Ane | es_ES |
dc.contributor.author | Soriano, Álvaro | es_ES |
dc.contributor.author | Carrillo Abad, Jorge | es_ES |
dc.date.accessioned | 2021-05-21T03:32:17Z | |
dc.date.available | 2021-05-21T03:32:17Z | |
dc.date.issued | 2018-06 | es_ES |
dc.identifier.issn | 0045-6535 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166595 | |
dc.description.abstract | [EN] The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5¿600 A m¿2) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J¿=¿50 A m¿2), using NaCl, Na2SO4 and NaClO4, the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO4¿ was not observed. When using Na2SO4 electrolyte, increasing the applied current density to 350¿600 A m¿2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities. | es_ES |
dc.description.sponsorship | Support from MINECO and SPAIN-FEDER 2014e2020 to project CTM 2016-75509-R and to the Spanish Excellence Network E3TECH (CTQ 2015-71650-RDT) is acknowledged. J. Carrillo-Abad thanks the Generalitat Valenciana for granting a post-doctoral fellowship (APOSTD/2015/019). The authors are thankful to Dr. R. Buck (Chemours Co.) for kindly providing samples of Capstone FS10 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemosphere | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 6:2 FTSA | es_ES |
dc.subject | BDD | es_ES |
dc.subject | Electrolysis | es_ES |
dc.subject | Perfluorinated alkyl substances | es_ES |
dc.subject | PFHxA | es_ES |
dc.subject | Fluorochemicals | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | BDD Anodic Treatment of 6:2 Fluorotelomer Sulfonate (6:2 FTSA).Evaluation of Operating Variables and By-Product Formation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemosphere.2018.03.027 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-71650-REDT/ES/APLICACIONES MEDIOAMBIENTALES Y ENERGETICAS DE LA TECNOLOGIA ELECTROQUIMICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2016-75509-R/ES/ESTRATEGIAS AVANZADAS DE INTEGRACION DE MEMBRANAS Y PROCESOS ELECTROCATALITICOS Y FOTOCATALITICOS PARA LA ELIMINACION DE CONTAMINANTES PERSISTENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2015%2F019/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Urtiaga, A.; Soriano, Á.; Carrillo Abad, J. (2018). BDD Anodic Treatment of 6:2 Fluorotelomer Sulfonate (6:2 FTSA).Evaluation of Operating Variables and By-Product Formation. Chemosphere. 201:571-577. https://doi.org/10.1016/j.chemosphere.2018.03.027 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chemosphere.2018.03.027 | es_ES |
dc.description.upvformatpinicio | 571 | es_ES |
dc.description.upvformatpfin | 577 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 201 | es_ES |
dc.identifier.pmid | 29533807 | es_ES |
dc.relation.pasarela | S\355082 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Azizi, O., Hubler, D., Schrader, G., Farrell, J., & Chaplin, B. P. (2011). Mechanism of Perchlorate Formation on Boron-Doped Diamond Film Anodes. Environmental Science & Technology, 45(24), 10582-10590. doi:10.1021/es202534w | es_ES |
dc.description.references | Bergmann, M. E. H., Rollin, J., & Iourtchouk, T. (2009). The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochimica Acta, 54(7), 2102-2107. doi:10.1016/j.electacta.2008.09.040 | es_ES |
dc.description.references | Cabeza, A., Urtiaga, A. M., & Ortiz, I. (2007). Electrochemical Treatment of Landfill Leachates Using a Boron-Doped Diamond Anode. Industrial & Engineering Chemistry Research, 46(5), 1439-1446. doi:10.1021/ie061373x | es_ES |
dc.description.references | Chaplin, B. P., Wyle, I., Zeng, H., Carlisle, J. A., & Farrell, J. (2011). Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. Journal of Applied Electrochemistry, 41(11), 1329-1340. doi:10.1007/s10800-011-0351-7 | es_ES |
dc.description.references | Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104 | es_ES |
dc.description.references | Diban, N., & Urtiaga, A. (2018). Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes. Environmental Science and Pollution Research, 25(35), 34922-34929. doi:10.1007/s11356-017-1124-6 | es_ES |
dc.description.references | Fernandez, N. A., Rodriguez-Freire, L., Keswani, M., & Sierra-Alvarez, R. (2016). Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Science: Water Research & Technology, 2(6), 975-983. doi:10.1039/c6ew00150e | es_ES |
dc.description.references | Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chemical Engineering Journal, 322, 196-204. doi:10.1016/j.cej.2017.04.040 | es_ES |
dc.description.references | Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Boron doped diamond electrooxidation of 6:2 fluorotelomers and perfluorocarboxylic acids. Application to industrial wastewaters treatment. Journal of Electroanalytical Chemistry, 798, 51-57. doi:10.1016/j.jelechem.2017.05.033 | es_ES |
dc.description.references | Hoke, R. A., Ferrell, B. D., Ryan, T., Sloman, T. L., Green, J. W., Nabb, D. L., … Korzeniowski, S. H. (2015). Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate. Chemosphere, 128, 258-265. doi:10.1016/j.chemosphere.2015.01.033 | es_ES |
dc.description.references | Jalife-Jacobo, H., Feria-Reyes, R., Serrano-Torres, O., Gutiérrez-Granados, S., & Peralta-Hernández, J. M. (2016). Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes. Journal of Hazardous Materials, 319, 78-83. doi:10.1016/j.jhazmat.2016.02.056 | es_ES |
dc.description.references | Lan, Y., Coetsier, C., Causserand, C., & Groenen Serrano, K. (2017). On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochimica Acta, 231, 309-318. doi:10.1016/j.electacta.2017.01.160 | es_ES |
dc.description.references | Martín de Vidales, M. J., Millán, M., Sáez, C., Pérez, J. F., Rodrigo, M. A., & Cañizares, P. (2015). Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 136, 281-288. doi:10.1016/j.chemosphere.2015.05.077 | es_ES |
dc.description.references | Park, S., Lee, L. S., Medina, V. F., Zull, A., & Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere, 145, 376-383. doi:10.1016/j.chemosphere.2015.11.097 | es_ES |
dc.description.references | Pérez, G., Saiz, J., Ibañez, R., Urtiaga, A. M., & Ortiz, I. (2012). Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Research, 46(8), 2579-2590. doi:10.1016/j.watres.2012.02.015 | es_ES |
dc.description.references | Pipi, A. R. F., Sirés, I., De Andrade, A. R., & Brillas, E. (2014). Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere, 109, 49-55. doi:10.1016/j.chemosphere.2014.03.006 | es_ES |
dc.description.references | Schaefer, C. E., Andaya, C., Burant, A., Condee, C. W., Urtiaga, A., Strathmann, T. J., & Higgins, C. P. (2017). Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal, 317, 424-432. doi:10.1016/j.cej.2017.02.107 | es_ES |
dc.description.references | Sopaj, F., Rodrigo, M. A., Oturan, N., Podvorica, F. I., Pinson, J., & Oturan, M. A. (2015). Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chemical Engineering Journal, 262, 286-294. doi:10.1016/j.cej.2014.09.100 | es_ES |
dc.description.references | Soriano, Á., Gorri, D., & Urtiaga, A. (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112, 147-156. doi:10.1016/j.watres.2017.01.043 | es_ES |
dc.description.references | Uranga-Flores, A., de la Rosa-Júarez, C., Gutierrez-Granados, S., de Moura, D. C., Martínez-Huitle, C. A., & Peralta Hernández, J. M. (2015). Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 738, 84-91. doi:10.1016/j.jelechem.2014.11.030 | es_ES |
dc.description.references | Urtiaga, A., Ortiz, I., Anglada, A., Mantzavinos, D., & Diamadopoulos, E. (2012). Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. Journal of Applied Electrochemistry, 42(9), 779-786. doi:10.1007/s10800-012-0458-5 | es_ES |
dc.description.references | Urtiaga, A., Fernandez-Castro, P., Gómez, P., & Ortiz, I. (2014). Remediation of wastewaters containing tetrahydrofuran. Study of the electrochemical mineralization on BDD electrodes. Chemical Engineering Journal, 239, 341-350. doi:10.1016/j.cej.2013.11.028 | es_ES |
dc.description.references | Urtiaga, A., Fernández-González, C., Gómez-Lavín, S., & Ortiz, I. (2015). Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes. Chemosphere, 129, 20-26. doi:10.1016/j.chemosphere.2014.05.090 | es_ES |
dc.description.references | Valsecchi, S., Conti, D., Crebelli, R., Polesello, S., Rusconi, M., Mazzoni, M., … Aste, F. (2017). Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. Journal of Hazardous Materials, 323, 84-98. doi:10.1016/j.jhazmat.2016.04.055 | es_ES |
dc.description.references | Wang, N., Liu, J., Buck, R. C., Korzeniowski, S. H., Wolstenholme, B. W., Folsom, P. W., & Sulecki, L. M. (2011). 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere, 82(6), 853-858. doi:10.1016/j.chemosphere.2010.11.003 | es_ES |
dc.description.references | Wang, Z., Cousins, I. T., Scheringer, M., & Hungerbühler, K. (2013). Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment International, 60, 242-248. doi:10.1016/j.envint.2013.08.021 | es_ES |
dc.description.references | Yang, X., Huang, J., Zhang, K., Yu, G., Deng, S., & Wang, B. (2013). Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway. Environmental Science and Pollution Research, 21(6), 4634-4642. doi:10.1007/s11356-013-2389-z | es_ES |
dc.description.references | Zhuo, Q., Li, X., Yan, F., Yang, B., Deng, S., Huang, J., & Yu, G. (2014). Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: Operating parameters and mechanism. Journal of Environmental Sciences, 26(8), 1733-1739. doi:10.1016/j.jes.2014.06.014 | es_ES |