- -

BDD Anodic Treatment of 6:2 Fluorotelomer Sulfonate (6:2 FTSA).Evaluation of Operating Variables and By-Product Formation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BDD Anodic Treatment of 6:2 Fluorotelomer Sulfonate (6:2 FTSA).Evaluation of Operating Variables and By-Product Formation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Urtiaga, Ane es_ES
dc.contributor.author Soriano, Álvaro es_ES
dc.contributor.author Carrillo Abad, Jorge es_ES
dc.date.accessioned 2021-05-21T03:32:17Z
dc.date.available 2021-05-21T03:32:17Z
dc.date.issued 2018-06 es_ES
dc.identifier.issn 0045-6535 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166595
dc.description.abstract [EN] The concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes. Bench scale batch experiments were performed, focused on assessing the effect of the electrolyte and the applied current density (5¿600 A m¿2) on the removal of 6:2 FTSA, the reduction of total organic carbon (TOC) and the fluoride release. Results showed that at the low range of applied current density (J¿=¿50 A m¿2), using NaCl, Na2SO4 and NaClO4, the electrolyte exerted a minimal effect on removal rates. The formation of toxic inorganic chlorine species such as ClO4¿ was not observed. When using Na2SO4 electrolyte, increasing the applied current density to 350¿600 A m¿2 promoted a notable enhancement of the 6:2 FTSA removal and defluorination rates, pointing to the positive contribution of electrogenerated secondary oxidants to the overall removal rate. 6:2 FTSA was transformed into shorter-chain PFCAs, and eventually into CO2 and fluoride, as TOC reduction was >90%. Finally, it was demonstrated that diffusion in the liquid phase was controlling the overall kinetic rate, although with moderate improvements due to secondary oxidants at very high current densities. es_ES
dc.description.sponsorship Support from MINECO and SPAIN-FEDER 2014e2020 to project CTM 2016-75509-R and to the Spanish Excellence Network E3TECH (CTQ 2015-71650-RDT) is acknowledged. J. Carrillo-Abad thanks the Generalitat Valenciana for granting a post-doctoral fellowship (APOSTD/2015/019). The authors are thankful to Dr. R. Buck (Chemours Co.) for kindly providing samples of Capstone FS10 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemosphere es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 6:2 FTSA es_ES
dc.subject BDD es_ES
dc.subject Electrolysis es_ES
dc.subject Perfluorinated alkyl substances es_ES
dc.subject PFHxA es_ES
dc.subject Fluorochemicals es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title BDD Anodic Treatment of 6:2 Fluorotelomer Sulfonate (6:2 FTSA).Evaluation of Operating Variables and By-Product Formation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemosphere.2018.03.027 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-71650-REDT/ES/APLICACIONES MEDIOAMBIENTALES Y ENERGETICAS DE LA TECNOLOGIA ELECTROQUIMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2016-75509-R/ES/ESTRATEGIAS AVANZADAS DE INTEGRACION DE MEMBRANAS Y PROCESOS ELECTROCATALITICOS Y FOTOCATALITICOS PARA LA ELIMINACION DE CONTAMINANTES PERSISTENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2015%2F019/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Urtiaga, A.; Soriano, Á.; Carrillo Abad, J. (2018). BDD Anodic Treatment of 6:2 Fluorotelomer Sulfonate (6:2 FTSA).Evaluation of Operating Variables and By-Product Formation. Chemosphere. 201:571-577. https://doi.org/10.1016/j.chemosphere.2018.03.027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemosphere.2018.03.027 es_ES
dc.description.upvformatpinicio 571 es_ES
dc.description.upvformatpfin 577 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 201 es_ES
dc.identifier.pmid 29533807 es_ES
dc.relation.pasarela S\355082 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Azizi, O., Hubler, D., Schrader, G., Farrell, J., & Chaplin, B. P. (2011). Mechanism of Perchlorate Formation on Boron-Doped Diamond Film Anodes. Environmental Science & Technology, 45(24), 10582-10590. doi:10.1021/es202534w es_ES
dc.description.references Bergmann, M. E. H., Rollin, J., & Iourtchouk, T. (2009). The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochimica Acta, 54(7), 2102-2107. doi:10.1016/j.electacta.2008.09.040 es_ES
dc.description.references Cabeza, A., Urtiaga, A. M., & Ortiz, I. (2007). Electrochemical Treatment of Landfill Leachates Using a Boron-Doped Diamond Anode. Industrial & Engineering Chemistry Research, 46(5), 1439-1446. doi:10.1021/ie061373x es_ES
dc.description.references Chaplin, B. P., Wyle, I., Zeng, H., Carlisle, J. A., & Farrell, J. (2011). Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. Journal of Applied Electrochemistry, 41(11), 1329-1340. doi:10.1007/s10800-011-0351-7 es_ES
dc.description.references Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104 es_ES
dc.description.references Diban, N., & Urtiaga, A. (2018). Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes. Environmental Science and Pollution Research, 25(35), 34922-34929. doi:10.1007/s11356-017-1124-6 es_ES
dc.description.references Fernandez, N. A., Rodriguez-Freire, L., Keswani, M., & Sierra-Alvarez, R. (2016). Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Science: Water Research & Technology, 2(6), 975-983. doi:10.1039/c6ew00150e es_ES
dc.description.references Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chemical Engineering Journal, 322, 196-204. doi:10.1016/j.cej.2017.04.040 es_ES
dc.description.references Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Boron doped diamond electrooxidation of 6:2 fluorotelomers and perfluorocarboxylic acids. Application to industrial wastewaters treatment. Journal of Electroanalytical Chemistry, 798, 51-57. doi:10.1016/j.jelechem.2017.05.033 es_ES
dc.description.references Hoke, R. A., Ferrell, B. D., Ryan, T., Sloman, T. L., Green, J. W., Nabb, D. L., … Korzeniowski, S. H. (2015). Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate. Chemosphere, 128, 258-265. doi:10.1016/j.chemosphere.2015.01.033 es_ES
dc.description.references Jalife-Jacobo, H., Feria-Reyes, R., Serrano-Torres, O., Gutiérrez-Granados, S., & Peralta-Hernández, J. M. (2016). Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes. Journal of Hazardous Materials, 319, 78-83. doi:10.1016/j.jhazmat.2016.02.056 es_ES
dc.description.references Lan, Y., Coetsier, C., Causserand, C., & Groenen Serrano, K. (2017). On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochimica Acta, 231, 309-318. doi:10.1016/j.electacta.2017.01.160 es_ES
dc.description.references Martín de Vidales, M. J., Millán, M., Sáez, C., Pérez, J. F., Rodrigo, M. A., & Cañizares, P. (2015). Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 136, 281-288. doi:10.1016/j.chemosphere.2015.05.077 es_ES
dc.description.references Park, S., Lee, L. S., Medina, V. F., Zull, A., & Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere, 145, 376-383. doi:10.1016/j.chemosphere.2015.11.097 es_ES
dc.description.references Pérez, G., Saiz, J., Ibañez, R., Urtiaga, A. M., & Ortiz, I. (2012). Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Research, 46(8), 2579-2590. doi:10.1016/j.watres.2012.02.015 es_ES
dc.description.references Pipi, A. R. F., Sirés, I., De Andrade, A. R., & Brillas, E. (2014). Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere, 109, 49-55. doi:10.1016/j.chemosphere.2014.03.006 es_ES
dc.description.references Schaefer, C. E., Andaya, C., Burant, A., Condee, C. W., Urtiaga, A., Strathmann, T. J., & Higgins, C. P. (2017). Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal, 317, 424-432. doi:10.1016/j.cej.2017.02.107 es_ES
dc.description.references Sopaj, F., Rodrigo, M. A., Oturan, N., Podvorica, F. I., Pinson, J., & Oturan, M. A. (2015). Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chemical Engineering Journal, 262, 286-294. doi:10.1016/j.cej.2014.09.100 es_ES
dc.description.references Soriano, Á., Gorri, D., & Urtiaga, A. (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112, 147-156. doi:10.1016/j.watres.2017.01.043 es_ES
dc.description.references Uranga-Flores, A., de la Rosa-Júarez, C., Gutierrez-Granados, S., de Moura, D. C., Martínez-Huitle, C. A., & Peralta Hernández, J. M. (2015). Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 738, 84-91. doi:10.1016/j.jelechem.2014.11.030 es_ES
dc.description.references Urtiaga, A., Ortiz, I., Anglada, A., Mantzavinos, D., & Diamadopoulos, E. (2012). Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. Journal of Applied Electrochemistry, 42(9), 779-786. doi:10.1007/s10800-012-0458-5 es_ES
dc.description.references Urtiaga, A., Fernandez-Castro, P., Gómez, P., & Ortiz, I. (2014). Remediation of wastewaters containing tetrahydrofuran. Study of the electrochemical mineralization on BDD electrodes. Chemical Engineering Journal, 239, 341-350. doi:10.1016/j.cej.2013.11.028 es_ES
dc.description.references Urtiaga, A., Fernández-González, C., Gómez-Lavín, S., & Ortiz, I. (2015). Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes. Chemosphere, 129, 20-26. doi:10.1016/j.chemosphere.2014.05.090 es_ES
dc.description.references Valsecchi, S., Conti, D., Crebelli, R., Polesello, S., Rusconi, M., Mazzoni, M., … Aste, F. (2017). Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. Journal of Hazardous Materials, 323, 84-98. doi:10.1016/j.jhazmat.2016.04.055 es_ES
dc.description.references Wang, N., Liu, J., Buck, R. C., Korzeniowski, S. H., Wolstenholme, B. W., Folsom, P. W., & Sulecki, L. M. (2011). 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere, 82(6), 853-858. doi:10.1016/j.chemosphere.2010.11.003 es_ES
dc.description.references Wang, Z., Cousins, I. T., Scheringer, M., & Hungerbühler, K. (2013). Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment International, 60, 242-248. doi:10.1016/j.envint.2013.08.021 es_ES
dc.description.references Yang, X., Huang, J., Zhang, K., Yu, G., Deng, S., & Wang, B. (2013). Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway. Environmental Science and Pollution Research, 21(6), 4634-4642. doi:10.1007/s11356-013-2389-z es_ES
dc.description.references Zhuo, Q., Li, X., Yan, F., Yang, B., Deng, S., Huang, J., & Yu, G. (2014). Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: Operating parameters and mechanism. Journal of Environmental Sciences, 26(8), 1733-1739. doi:10.1016/j.jes.2014.06.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem