Azizi, O., Hubler, D., Schrader, G., Farrell, J., & Chaplin, B. P. (2011). Mechanism of Perchlorate Formation on Boron-Doped Diamond Film Anodes. Environmental Science & Technology, 45(24), 10582-10590. doi:10.1021/es202534w
Bergmann, M. E. H., Rollin, J., & Iourtchouk, T. (2009). The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochimica Acta, 54(7), 2102-2107. doi:10.1016/j.electacta.2008.09.040
Cabeza, A., Urtiaga, A. M., & Ortiz, I. (2007). Electrochemical Treatment of Landfill Leachates Using a Boron-Doped Diamond Anode. Industrial & Engineering Chemistry Research, 46(5), 1439-1446. doi:10.1021/ie061373x
[+]
Azizi, O., Hubler, D., Schrader, G., Farrell, J., & Chaplin, B. P. (2011). Mechanism of Perchlorate Formation on Boron-Doped Diamond Film Anodes. Environmental Science & Technology, 45(24), 10582-10590. doi:10.1021/es202534w
Bergmann, M. E. H., Rollin, J., & Iourtchouk, T. (2009). The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochimica Acta, 54(7), 2102-2107. doi:10.1016/j.electacta.2008.09.040
Cabeza, A., Urtiaga, A. M., & Ortiz, I. (2007). Electrochemical Treatment of Landfill Leachates Using a Boron-Doped Diamond Anode. Industrial & Engineering Chemistry Research, 46(5), 1439-1446. doi:10.1021/ie061373x
Chaplin, B. P., Wyle, I., Zeng, H., Carlisle, J. A., & Farrell, J. (2011). Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. Journal of Applied Electrochemistry, 41(11), 1329-1340. doi:10.1007/s10800-011-0351-7
Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104
Diban, N., & Urtiaga, A. (2018). Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes. Environmental Science and Pollution Research, 25(35), 34922-34929. doi:10.1007/s11356-017-1124-6
Fernandez, N. A., Rodriguez-Freire, L., Keswani, M., & Sierra-Alvarez, R. (2016). Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environmental Science: Water Research & Technology, 2(6), 975-983. doi:10.1039/c6ew00150e
Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chemical Engineering Journal, 322, 196-204. doi:10.1016/j.cej.2017.04.040
Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Boron doped diamond electrooxidation of 6:2 fluorotelomers and perfluorocarboxylic acids. Application to industrial wastewaters treatment. Journal of Electroanalytical Chemistry, 798, 51-57. doi:10.1016/j.jelechem.2017.05.033
Hoke, R. A., Ferrell, B. D., Ryan, T., Sloman, T. L., Green, J. W., Nabb, D. L., … Korzeniowski, S. H. (2015). Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate. Chemosphere, 128, 258-265. doi:10.1016/j.chemosphere.2015.01.033
Jalife-Jacobo, H., Feria-Reyes, R., Serrano-Torres, O., Gutiérrez-Granados, S., & Peralta-Hernández, J. M. (2016). Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes. Journal of Hazardous Materials, 319, 78-83. doi:10.1016/j.jhazmat.2016.02.056
Lan, Y., Coetsier, C., Causserand, C., & Groenen Serrano, K. (2017). On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochimica Acta, 231, 309-318. doi:10.1016/j.electacta.2017.01.160
Martín de Vidales, M. J., Millán, M., Sáez, C., Pérez, J. F., Rodrigo, M. A., & Cañizares, P. (2015). Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 136, 281-288. doi:10.1016/j.chemosphere.2015.05.077
Park, S., Lee, L. S., Medina, V. F., Zull, A., & Waisner, S. (2016). Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere, 145, 376-383. doi:10.1016/j.chemosphere.2015.11.097
Pérez, G., Saiz, J., Ibañez, R., Urtiaga, A. M., & Ortiz, I. (2012). Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates. Water Research, 46(8), 2579-2590. doi:10.1016/j.watres.2012.02.015
Pipi, A. R. F., Sirés, I., De Andrade, A. R., & Brillas, E. (2014). Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere, 109, 49-55. doi:10.1016/j.chemosphere.2014.03.006
Schaefer, C. E., Andaya, C., Burant, A., Condee, C. W., Urtiaga, A., Strathmann, T. J., & Higgins, C. P. (2017). Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal, 317, 424-432. doi:10.1016/j.cej.2017.02.107
Sopaj, F., Rodrigo, M. A., Oturan, N., Podvorica, F. I., Pinson, J., & Oturan, M. A. (2015). Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chemical Engineering Journal, 262, 286-294. doi:10.1016/j.cej.2014.09.100
Soriano, Á., Gorri, D., & Urtiaga, A. (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112, 147-156. doi:10.1016/j.watres.2017.01.043
Uranga-Flores, A., de la Rosa-Júarez, C., Gutierrez-Granados, S., de Moura, D. C., Martínez-Huitle, C. A., & Peralta Hernández, J. M. (2015). Electrochemical promotion of strong oxidants to degrade Acid Red 211: Effect of supporting electrolytes. Journal of Electroanalytical Chemistry, 738, 84-91. doi:10.1016/j.jelechem.2014.11.030
Urtiaga, A., Ortiz, I., Anglada, A., Mantzavinos, D., & Diamadopoulos, E. (2012). Kinetic modeling of the electrochemical removal of ammonium and COD from landfill leachates. Journal of Applied Electrochemistry, 42(9), 779-786. doi:10.1007/s10800-012-0458-5
Urtiaga, A., Fernandez-Castro, P., Gómez, P., & Ortiz, I. (2014). Remediation of wastewaters containing tetrahydrofuran. Study of the electrochemical mineralization on BDD electrodes. Chemical Engineering Journal, 239, 341-350. doi:10.1016/j.cej.2013.11.028
Urtiaga, A., Fernández-González, C., Gómez-Lavín, S., & Ortiz, I. (2015). Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes. Chemosphere, 129, 20-26. doi:10.1016/j.chemosphere.2014.05.090
Valsecchi, S., Conti, D., Crebelli, R., Polesello, S., Rusconi, M., Mazzoni, M., … Aste, F. (2017). Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. Journal of Hazardous Materials, 323, 84-98. doi:10.1016/j.jhazmat.2016.04.055
Wang, N., Liu, J., Buck, R. C., Korzeniowski, S. H., Wolstenholme, B. W., Folsom, P. W., & Sulecki, L. M. (2011). 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere, 82(6), 853-858. doi:10.1016/j.chemosphere.2010.11.003
Wang, Z., Cousins, I. T., Scheringer, M., & Hungerbühler, K. (2013). Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment International, 60, 242-248. doi:10.1016/j.envint.2013.08.021
Yang, X., Huang, J., Zhang, K., Yu, G., Deng, S., & Wang, B. (2013). Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway. Environmental Science and Pollution Research, 21(6), 4634-4642. doi:10.1007/s11356-013-2389-z
Zhuo, Q., Li, X., Yan, F., Yang, B., Deng, S., Huang, J., & Yu, G. (2014). Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: Operating parameters and mechanism. Journal of Environmental Sciences, 26(8), 1733-1739. doi:10.1016/j.jes.2014.06.014
[-]