- -

Overview of Clean Automotive Thermal Propulsion Options for India to 2030

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Overview of Clean Automotive Thermal Propulsion Options for India to 2030

Mostrar el registro completo del ítem

Gohil, DB.; Pesyridis, A.; Serrano, J. (2020). Overview of Clean Automotive Thermal Propulsion Options for India to 2030. Applied Sciences. 10(10):1-29. https://doi.org/10.3390/app10103604

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166598

Ficheros en el ítem

Metadatos del ítem

Título: Overview of Clean Automotive Thermal Propulsion Options for India to 2030
Autor: Gohil, Dhrumil B. Pesyridis, Apostolos Serrano, J.R.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] This paper presents the evaluation of near-future advanced internal combustion engine technologies to reach near zero-emission in vehicles with in the Indian market. Extensive research was carried out to propose the ...[+]
Palabras clave: Thermal propulsion , Internal combustion engine , Carbon capture and storage , Combustion , Boosting , Waste heat recovery
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10103604
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10103604
Tipo: Artículo

References

Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001

The Guardianhttps://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling

Technical Regulations, Emission Normshttp://www.siamindia.com/technical-regulation.aspx?mpgid=31&pgidtrail=33 [+]
Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001

The Guardianhttps://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling

Technical Regulations, Emission Normshttp://www.siamindia.com/technical-regulation.aspx?mpgid=31&pgidtrail=33

Diesel Nethttps://www.dieselnet.com/standards/in/

Wissenschaftliche Gesellschaft für Kraftfahrzeug- und Motorentechnik e.Vhttps://www.wkm-ev.de/de/aktuelles.html

14 of World’s 15 Most Polluted Cities in Indiahttps://timesofindia.indiatimes.com/city/delhi/14-of-worlds-15-most-polluted-cities-in-india/articleshow/63993356.cms

CO2 Emissions from Transport (% of Total Fuel Combustion)https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS?end=2014&locations=IN&name_desc=false&start=1971&view=chart

How India can Drive Towards and Emission Free Futurehttps://www.autocarpro.in/opinion-column/how-india-can-drive-towards-an-emissionfree-future-41288

SIAM Welcomes PM Modi’s Assurance on Co-Existence of ICE Vehicles and EVshttps://auto.economictimes.indiatimes.com/news/industry/siam-welcomes-pm-modis-assurance-on-co-existence-of-ice-vehicles-and-evs/70673440

Springer Link: Lifetime CO2 Emissions in Different Indian Vehicleshttps://link.springer.com/article/10.1365/s40112-015-1005-7

Bernstein, L., Lee, A., & Crookshank, S. (2006). Carbon dioxide capture and storage: a status report. Climate Policy, 6(2), 241-246. doi:10.1080/14693062.2006.9685598

International Transport Forumhttps://www.itf-oecd.org/lower-carbon-technologies-road-freight-transport

IPCC Special Report on Carbon Dioxide Capture and Storagehttps://www.researchgate.net/publication/239877190_IPCC_Special_Report_on_Carbon_dioxide_Capture_and_Storage

Carbon Capture Storage Technology and Indiahttps://en.reset.org/knowledge/carbon-capture-storage-technology-and-india

ZEROCO2 Energy & Climate Change—Policy and Progresshttp://www.zeroco2.no/projects/countries/india

The Third Polehttps://www.thethirdpole.net/en/2018/10/29/india-seeking-ways-to-limit-climate-change-after-ipcc-report/

Kapila, R. V., & Stuart Haszeldine, R. (2009). Opportunities in India for Carbon Capture and Storage as a form of climate change mitigation. Energy Procedia, 1(1), 4527-4534. doi:10.1016/j.egypro.2009.02.271

Avaritsioti, E. (2016). Environmental and Economic Benefits of Car Exhaust Heat Recovery. Transportation Research Procedia, 14, 1003-1012. doi:10.1016/j.trpro.2016.05.080

Dong, G., Morgan, R. E., & Heikal, M. R. (2016). Thermodynamic analysis and system design of a novel split cycle engine concept. Energy, 102, 576-585. doi:10.1016/j.energy.2016.02.102

Morgan, R. E., Jackson, N., Atkins, A., dong, G., Heikal, M., & lenartowicz, C. (2017). The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig. SAE International Journal of Engines, 10(5), 2596-2605. doi:10.4271/2017-24-0169

Description of a Novel Concentric Rotary Enginehttps://www.sae.org/publications/technical-papers/content/2018-01-0365/

Sae Mobilushttps://doi.org/10.4271/2019-01-0325

Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2014). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810-825. doi:10.1177/1468087414552289

Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. doi:10.1016/j.apenergy.2019.113380

Ramesh, N., & Mallikarjuna, J. M. (2016). Evaluation of in-cylinder mixture homogeneity in a diesel HCCI engine – A CFD analysis. Engineering Science and Technology, an International Journal, 19(2), 917-925. doi:10.1016/j.jestch.2015.11.013

Benajes, J., García-Oliver, J. M., Novella, R., & Kolodziej, C. (2012). Increased particle emissions from early fuel injection timing Diesel low temperature combustion. Fuel, 94, 184-190. doi:10.1016/j.fuel.2011.09.014

Rajkumar, S., & Thangaraja, J. (2019). Effect of biodiesel, biodiesel binary blends, hydrogenated biodiesel and injection parameters on NOx and soot emissions in a turbocharged diesel engine. Fuel, 240, 101-118. doi:10.1016/j.fuel.2018.11.141

Jin, C., & Zheng, Z. (2015). A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics. Journal of Chemistry, 2015, 1-23. doi:10.1155/2015/910348

Dev, S., B Chaudhari, H., Gothekar, S., Juttu, S., Harishchandra Walke, N., & Marathe, N. V. (2017). Review on Advanced Low Temperature Combustion Approach for BS VI. SAE Technical Paper Series. doi:10.4271/2017-26-0042

Stanton, D. W. (2013). Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations. SAE International Journal of Engines, 6(3), 1395-1480. doi:10.4271/2013-01-2421

Boretti, A., & Al-Zubaidy, S. (2016). E-KERS Energy Management Crucial to Improved Fuel Economy. SAE Technical Paper Series. doi:10.4271/2016-01-1947

Metz, L. D. (2013). Potential for Passenger Car Energy Recovery through the Use of Kinetic Energy Recovery Systems (KERS). SAE Technical Paper Series. doi:10.4271/2013-01-0407

Kim, J. S., Kim, S. M., Jeong, J. H., Jeong, S. C., & Lee, J. W. (2016). Effect of regenerative braking energy on battery current balance in a parallel hybrid gasoline-electric vehicle under FTP-75 driving mode. International Journal of Automotive Technology, 17(5), 865-872. doi:10.1007/s12239-016-0084-z

Boretti, A. (2010). Improvements of Vehicle Fuel Economy Using Mechanical Regenerative Braking. SAE Technical Paper Series. doi:10.4271/2010-01-1683

Clarke, P., Muneer, T., & Cullinane, K. (2010). Cutting vehicle emissions with regenerative braking. Transportation Research Part D: Transport and Environment, 15(3), 160-167. doi:10.1016/j.trd.2009.11.002

Commercial Fleethttps://www.commercialfleet.org/news/truck-news/2015/09/02/kers-system-developed-for-road-freight-trucks

Aggarwal, P., & Jain, S. (2016). Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures. Journal of Cleaner Production, 128, 48-61. doi:10.1016/j.jclepro.2014.12.012

Kanikdale, T., & Venugopal, S. (2015). Future Scenarios for Automotive Engines in India. SAE Technical Paper Series. doi:10.4271/2015-26-0034

Saidur, R., Rezaei, M., Muzammil, W. K., Hassan, M. H., Paria, S., & Hasanuzzaman, M. (2012). Technologies to recover exhaust heat from internal combustion engines. Renewable and Sustainable Energy Reviews, 16(8), 5649-5659. doi:10.1016/j.rser.2012.05.018

Arsie, I., Cricchio, A., Pianese, C., De Cesare, M., & Nesci, W. (2014). A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars. SAE Technical Paper Series. doi:10.4271/2014-01-1650

EcoScorehttp://ecoscore.be/en/info/ecoscore/co2

CO₂ and Greenhouse Gas Emissionshttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem