- -

Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sharma, Sidharath es_ES
dc.contributor.author GARCIA TISCAR, JORGE es_ES
dc.contributor.author Allport, John M. es_ES
dc.contributor.author Barrans, Simon es_ES
dc.contributor.author Nickson, Ambrose K. es_ES
dc.date.accessioned 2021-05-21T03:32:29Z
dc.date.available 2021-05-21T03:32:29Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 1270-9638 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166600
dc.description.abstract [EN] Developments in computing infrastructure and methods over the last decade have enhanced the potential of numerical methods to reasonably predict the aerodynamic noise. The generation and propagation of the flow induced noise are aerodynamic phenomena. Although the fluid flow dynamics and the resultant acoustics are both governed by mass and momentum conservation equations, former is of convective and for diffusive nature while the latter is propagative showing insignificant attenuation due to viscosity except for small viscothermal losses. Aeroacoustic modelling of systems with intricate geometries and complex flow is still not mature due to challenges in the accurate tractable representation of turbulent viscous flows. Therefore, state-of-the-art for computing flow-induced noise in small centrifugal compressors is reviewed and critical evaluation of various parameters in the numerical model is undertaken in this work. The impact of various turbulence formulations along with corresponding spatial and temporal resolutions on performance and acoustic predictions are quantified. The performance predictions are observed to be within 1.5% of the measured values irrespective of turbulence and timestep parameters. The noise generated by the impeller is observed to be reasonably correlated with the measurements and the absolute values of the sound pressure levels along with decay rates predicted by LES and SBES formulations are better than the similar predictions from DES and URANS formulations. The impact of timestep size is observed and is determinant of the frequency up to which spectra can be appropriately resolved. Furthermore, results emphasise the importance of high spatial resolution for scale resolving turbulence formulations to yield better results and the information can be used to select appropriate numerical configuration considering time and accuracy trade-offs. (C) 2020 Elsevier Masson SAS. All rights reserved. es_ES
dc.description.sponsorship The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this paper. The support of the HPC group at the University of Huddersfield is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Aerospace Science and Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Compressor Noise es_ES
dc.subject Aeroacoustics es_ES
dc.subject LES es_ES
dc.subject SBES es_ES
dc.subject DES es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ast.2020.105697 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RGF//01.09.07.01%2F1789C/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2020). Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor. Aerospace Science and Technology. 98:1-15. https://doi.org/10.1016/j.ast.2020.105697 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ast.2020.105697 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 98 es_ES
dc.relation.pasarela S\400364 es_ES
dc.contributor.funder BorgWarner Turbo Systems es_ES
dc.contributor.funder Regional Growth Fund, Reino Unido es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006 es_ES
dc.description.references Broatch, A., García-Tíscar, J., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology, 90, 388-400. doi:10.1016/j.ast.2019.05.015 es_ES
dc.description.references Galindo, J., Tiseira, A., Navarro, R., & López, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004 es_ES
dc.description.references Fontanesi, S., Paltrinieri, S., & Cantore, G. (2014). CFD Analysis of the Acoustic Behavior of a Centrifugal Compressor for High Performance Engine Application. Energy Procedia, 45, 759-768. doi:10.1016/j.egypro.2014.01.081 es_ES
dc.description.references Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-z es_ES
dc.description.references Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040 es_ES
dc.description.references Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032 es_ES
dc.description.references Sharma, S., Broatch, A., García-Tíscar, J., Nickson, A. K., & Allport, J. M. (2019). Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Applied Acoustics, 148, 434-447. doi:10.1016/j.apacoust.2019.01.005 es_ES
dc.description.references Després, G., Boum, G. N., Leboeuf, F., Chalet, D., Chesse, P., & Lefebvre, A. (2013). Simulation of near surge instabilities onset in a turbocharger compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(6), 665-673. doi:10.1177/0957650913495537 es_ES
dc.description.references Guo, Q., Chen, H., Zhu, X.-C., Du, Z.-H., & Zhao, Y. (2007). Numerical simulations of stall inside a centrifugal compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(5), 683-693. doi:10.1243/09576509jpe417 es_ES
dc.description.references Ma, S.-B., & Kim, K.-Y. (2017). Optimization of discrete cavities in a centrifugal compressor to enhance operating stability. Aerospace Science and Technology, 68, 308-319. doi:10.1016/j.ast.2017.05.029 es_ES
dc.description.references He, X., & Zheng, X. (2019). Roles and mechanisms of casing treatment on different scales of flow instability in high pressure ratio centrifugal compressors. Aerospace Science and Technology, 84, 734-746. doi:10.1016/j.ast.2018.10.015 es_ES
dc.description.references Shahin, I., Alqaradawi, M., Gadala, M., & Badr, O. (2017). On the aero acoustic and internal flows structure in a centrifugal compressor with hub side cavity operating at off design condition. Aerospace Science and Technology, 60, 68-83. doi:10.1016/j.ast.2016.10.031 es_ES
dc.description.references Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901 es_ES
dc.description.references Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2019). Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: An experimental study. Aerospace Science and Technology, 95, 105518. doi:10.1016/j.ast.2019.105518 es_ES
dc.description.references Chow, P., Cross, M., & Pericleous, K. (1996). A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. Applied Mathematical Modelling, 20(2), 170-183. doi:10.1016/0307-904x(95)00156-e es_ES
dc.description.references Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149 es_ES
dc.description.references Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 es_ES
dc.description.references F. Menter, M. Kuntz, Development and application of a zonal des turbulence model for cfx-5, Ansys, CFX-Validation Report, Technical Report No. CFX-VAL17/0503. es_ES
dc.description.references TUCKER, P. G. (2007). Large-Eddy Simulation for Acoustics. Edited by C. Wagner, T. Hüttl & P. Sagaut. Cambridge University Press, 2007. 441 pp. ISBN 978 0521 871440. £65. Journal of Fluid Mechanics, 593, 505-507. doi:10.1017/s0022112007008725 es_ES
dc.description.references Nicoud, F., & Ducros, F. (1999). Flow, Turbulence and Combustion, 62(3), 183-200. doi:10.1023/a:1009995426001 es_ES
dc.description.references Hellstrom, F., Gutmark, E., & Fuchs, L. (2012). Large Eddy Simulation of the Unsteady Flow in a Radial Compressor Operating Near Surge. Journal of Turbomachinery, 134(5). doi:10.1115/1.4003816 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem