- -

Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor

Mostrar el registro completo del ítem

Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2020). Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor. Aerospace Science and Technology. 98:1-15. https://doi.org/10.1016/j.ast.2020.105697

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166600

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of modelling parameters for computing flow-induced noise in a small high-speed centrifugal compressor
Autor: Sharma, Sidharath GARCIA TISCAR, JORGE Allport, John M. Barrans, Simon Nickson, Ambrose K.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Developments in computing infrastructure and methods over the last decade have enhanced the potential of numerical methods to reasonably predict the aerodynamic noise. The generation and propagation of the flow induced ...[+]
Palabras clave: Compressor Noise , Aeroacoustics , LES , SBES , DES
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Aerospace Science and Technology. (issn: 1270-9638 )
DOI: 10.1016/j.ast.2020.105697
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ast.2020.105697
Código del Proyecto:
info:eu-repo/grantAgreement/RGF//01.09.07.01%2F1789C/
Agradecimientos:
The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the ...[+]
Tipo: Artículo

References

Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006

Broatch, A., García-Tíscar, J., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology, 90, 388-400. doi:10.1016/j.ast.2019.05.015

Galindo, J., Tiseira, A., Navarro, R., & López, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004 [+]
Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006

Broatch, A., García-Tíscar, J., Roig, F., & Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology, 90, 388-400. doi:10.1016/j.ast.2019.05.015

Galindo, J., Tiseira, A., Navarro, R., & López, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004

Fontanesi, S., Paltrinieri, S., & Cantore, G. (2014). CFD Analysis of the Acoustic Behavior of a Centrifugal Compressor for High Performance Engine Application. Energy Procedia, 45, 759-768. doi:10.1016/j.egypro.2014.01.081

Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-z

Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040

Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032

Sharma, S., Broatch, A., García-Tíscar, J., Nickson, A. K., & Allport, J. M. (2019). Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Applied Acoustics, 148, 434-447. doi:10.1016/j.apacoust.2019.01.005

Després, G., Boum, G. N., Leboeuf, F., Chalet, D., Chesse, P., & Lefebvre, A. (2013). Simulation of near surge instabilities onset in a turbocharger compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(6), 665-673. doi:10.1177/0957650913495537

Guo, Q., Chen, H., Zhu, X.-C., Du, Z.-H., & Zhao, Y. (2007). Numerical simulations of stall inside a centrifugal compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(5), 683-693. doi:10.1243/09576509jpe417

Ma, S.-B., & Kim, K.-Y. (2017). Optimization of discrete cavities in a centrifugal compressor to enhance operating stability. Aerospace Science and Technology, 68, 308-319. doi:10.1016/j.ast.2017.05.029

He, X., & Zheng, X. (2019). Roles and mechanisms of casing treatment on different scales of flow instability in high pressure ratio centrifugal compressors. Aerospace Science and Technology, 84, 734-746. doi:10.1016/j.ast.2018.10.015

Shahin, I., Alqaradawi, M., Gadala, M., & Badr, O. (2017). On the aero acoustic and internal flows structure in a centrifugal compressor with hub side cavity operating at off design condition. Aerospace Science and Technology, 60, 68-83. doi:10.1016/j.ast.2016.10.031

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901

Sharma, S., Broatch, A., García-Tíscar, J., Allport, J. M., & Nickson, A. K. (2019). Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: An experimental study. Aerospace Science and Technology, 95, 105518. doi:10.1016/j.ast.2019.105518

Chow, P., Cross, M., & Pericleous, K. (1996). A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. Applied Mathematical Modelling, 20(2), 170-183. doi:10.1016/0307-904x(95)00156-e

Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. doi:10.2514/3.12149

Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576

F. Menter, M. Kuntz, Development and application of a zonal des turbulence model for cfx-5, Ansys, CFX-Validation Report, Technical Report No. CFX-VAL17/0503.

TUCKER, P. G. (2007). Large-Eddy Simulation for Acoustics. Edited by C. Wagner, T. Hüttl & P. Sagaut. Cambridge University Press, 2007. 441 pp. ISBN 978 0521 871440. £65. Journal of Fluid Mechanics, 593, 505-507. doi:10.1017/s0022112007008725

Nicoud, F., & Ducros, F. (1999). Flow, Turbulence and Combustion, 62(3), 183-200. doi:10.1023/a:1009995426001

Hellstrom, F., Gutmark, E., & Fuchs, L. (2012). Large Eddy Simulation of the Unsteady Flow in a Radial Compressor Operating Near Surge. Journal of Turbomachinery, 134(5). doi:10.1115/1.4003816

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem