- -

Response of residential water demand to dynamic pricing: Evidence from an online experiment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Response of residential water demand to dynamic pricing: Evidence from an online experiment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marzano, Riccardo es_ES
dc.contributor.author Rougé, Charles es_ES
dc.contributor.author Garrone, Paola es_ES
dc.contributor.author Harou, Julien J. es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2021-05-22T03:31:36Z
dc.date.available 2021-05-22T03:31:36Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 2212-4284 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166641
dc.description.abstract [EN] Urban water demand management is key to water supply sustainability in high-density, water stressed areas throughout the world, and emerging technologies could transform it. In particular, smart metering could allow for conserving water by dynamically changing prices to reflect water scarcity and supply cost variability. Yet, little is known on end-users' reaction to short-term price changes, an essential determinant of the effectiveness and acceptability of dynamic water pricing. This paper reports on the design and results of an online experiment that measures end-users' water consumption decisions when confronted with time-varying prices, and investigates the interaction between pricing and water scarcity awareness. We design a series of treatments where players must indicate their shower length given different water prices, price variations, and scarcity scenarios. Beyond corroborating the theory that higher prices lower usage, the experiment finds evidence of a dynamic pricing effect: users respond more strongly to a given price if they have been exposed to a lower price before. This suggests short-term residential price increases could be effective at boosting water conservation. es_ES
dc.description.sponsorship The research for this paper was funded by the European Commission research project FP7-ICT-619172 SmartH2O: An ICT Platform to leverage on Social Computing for the efficient management of Water Consumption. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Water Resources and Economics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Dynamic pricing es_ES
dc.subject Urban water es_ES
dc.subject Online experiment es_ES
dc.subject Water scarcity es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Response of residential water demand to dynamic pricing: Evidence from an online experiment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.wre.2020.100169 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/619172/EU/SmartH2O: an ICT Platform to leverage on Social Computing for the efficient management of Water Consumption/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Marzano, R.; Rougé, C.; Garrone, P.; Harou, JJ.; Pulido-Velazquez, M. (2020). Response of residential water demand to dynamic pricing: Evidence from an online experiment. Water Resources and Economics. 32:1-13. https://doi.org/10.1016/j.wre.2020.100169 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.wre.2020.100169 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.relation.pasarela S\430252 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Olmstead, S. M., & Stavins, R. N. (2009). Comparing price and nonprice approaches to urban water conservation. Water Resources Research, 45(4). doi:10.1029/2008wr007227 es_ES
dc.description.references Pérez-Urdiales, M., & García-Valiñas, M. Á. (2016). Efficient water-using technologies and habits: A disaggregated analysis in the water sector. Ecological Economics, 128, 117-129. doi:10.1016/j.ecolecon.2016.04.011 es_ES
dc.description.references Rougé, C., Harou, J. J., Pulido-Velazquez, M., Matrosov, E. S., Garrone, P., Marzano, R., … Rizzoli, A.-E. (2018). Assessment of Smart-Meter-Enabled Dynamic Pricing at Utility and River Basin Scale. Journal of Water Resources Planning and Management, 144(5), 04018019. doi:10.1061/(asce)wr.1943-5452.0000888 es_ES
dc.description.references Vesal, M., Rahmati, M. H., & Hosseinabadi, N. T. (2018). The externality from communal metering of residential water: The case of Tehran. Water Resources and Economics, 23, 53-58. doi:10.1016/j.wre.2018.01.002 es_ES
dc.description.references Cominola, A., Giuliani, M., Piga, D., Castelletti, A., & Rizzoli, A. E. (2015). Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review. Environmental Modelling & Software, 72, 198-214. doi:10.1016/j.envsoft.2015.07.012 es_ES
dc.description.references Brelsford, C., & Abbott, J. K. (2017). Growing into Water Conservation? Decomposing the Drivers of Reduced Water Consumption in Las Vegas, NV. Ecological Economics, 133, 99-110. doi:10.1016/j.ecolecon.2016.10.012 es_ES
dc.description.references Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1), 51-65. doi:10.1016/j.ecolecon.2007.12.016 es_ES
dc.description.references Pulido-Velazquez, M., Alvarez-Mendiola, E., & Andreu, J. (2013). Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. Journal of Water Resources Planning and Management, 139(5), 583-592. doi:10.1061/(asce)wr.1943-5452.0000262 es_ES
dc.description.references Macian-Sorribes, H., Pulido-Velazquez, M., & Tilmant, A. (2015). Definition of efficient scarcity-based water pricing policies through stochastic programming. Hydrology and Earth System Sciences, 19(9), 3925-3935. doi:10.5194/hess-19-3925-2015 es_ES
dc.description.references Faruqui, A., & Sergici, S. (2010). Household response to dynamic pricing of electricity: a survey of 15 experiments. Journal of Regulatory Economics, 38(2), 193-225. doi:10.1007/s11149-010-9127-y es_ES
dc.description.references Ito, K., Ida, T., & Tanaka, M. (2018). Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand. American Economic Journal: Economic Policy, 10(1), 240-267. doi:10.1257/pol.20160093 es_ES
dc.description.references Joskow, P. L., & Wolfram, C. D. (2012). Dynamic Pricing of Electricity. American Economic Review, 102(3), 381-385. doi:10.1257/aer.102.3.381 es_ES
dc.description.references Dutta, G., & Mitra, K. (2017). A literature review on dynamic pricing of electricity. Journal of the Operational Research Society, 68(10), 1131-1145. doi:10.1057/s41274-016-0149-4 es_ES
dc.description.references Espey, M. (1998). Gasoline demand revisited: an international meta-analysis of elasticities. Energy Economics, 20(3), 273-295. doi:10.1016/s0140-9883(97)00013-3 es_ES
dc.description.references Sterner, T. (2007). Fuel taxes: An important instrument for climate policy. Energy Policy, 35(6), 3194-3202. doi:10.1016/j.enpol.2006.10.025 es_ES
dc.description.references Brons, M., Nijkamp, P., Pels, E., & Rietveld, P. (2008). A meta-analysis of the price elasticity of gasoline demand. A SUR approach. Energy Economics, 30(5), 2105-2122. doi:10.1016/j.eneco.2007.08.004 es_ES
dc.description.references Havranek, T., Irsova, Z., & Janda, K. (2012). Demand for gasoline is more price-inelastic than commonly thought. Energy Economics, 34(1), 201-207. doi:10.1016/j.eneco.2011.09.003 es_ES
dc.description.references Holtedahl, P., & Joutz, F. L. (2004). Residential electricity demand in Taiwan. Energy Economics, 26(2), 201-224. doi:10.1016/j.eneco.2003.11.001 es_ES
dc.description.references Halicioglu, F. (2007). Residential electricity demand dynamics in Turkey. Energy Economics, 29(2), 199-210. doi:10.1016/j.eneco.2006.11.007 es_ES
dc.description.references Mizutani, F., Tanaka, T., & Nakamura, E. (2018). The effect of demand response on electricity consumption under the existence of the reference price effect: Evidence from a dynamic pricing experiment in Japan. The Electricity Journal, 31(1), 16-22. doi:10.1016/j.tej.2018.01.004 es_ES
dc.description.references Briesch, R. A., Krishnamurthi, L., Mazumdar, T., & Raj, S. P. (1997). A Comparative Analysis of Reference Price Models. Journal of Consumer Research, 24(2), 202-214. doi:10.1086/209505 es_ES
dc.description.references Kalyanaram, G., Robinson, W. T., & Urban, G. L. (1995). Order of Market Entry: Established Empirical Generalizations, Emerging Empirical Generalizations, and Future Research. Marketing Science, 14(3_supplement), G212-G221. doi:10.1287/mksc.14.3.g212 es_ES
dc.description.references Espey, M., Espey, J., & Shaw, W. D. (1997). Price elasticity of residential demand for water: A meta-analysis. Water Resources Research, 33(6), 1369-1374. doi:10.1029/97wr00571 es_ES
dc.description.references Marzano, R., Rougé, C., Garrone, P., Grilli, L., Harou, J. J., & Pulido-Velazquez, M. (2018). Determinants of the price response to residential water tariffs: Meta-analysis and beyond. Environmental Modelling & Software, 101, 236-248. doi:10.1016/j.envsoft.2017.12.017 es_ES
dc.description.references Nauges, C., & Thomas, A. (2003). Environmental and Resource Economics, 26(1), 25-43. doi:10.1023/a:1025673318692 es_ES
dc.description.references Wichman, C. J. (2014). Perceived price in residential water demand: Evidence from a natural experiment. Journal of Economic Behavior & Organization, 107, 308-323. doi:10.1016/j.jebo.2014.02.017 es_ES
dc.description.references Nataraj, S., & Hanemann, W. M. (2011). Does marginal price matter? A regression discontinuity approach to estimating water demand. Journal of Environmental Economics and Management, 61(2), 198-212. doi:10.1016/j.jeem.2010.06.003 es_ES
dc.description.references Gaudin, S. (2006). Effect of price information on residential water demand. Applied Economics, 38(4), 383-393. doi:10.1080/00036840500397499 es_ES
dc.description.references Garrone, P., Grilli, L., & Marzano, R. (2019). Price elasticity of water demand considering scarcity and attitudes. Utilities Policy, 59, 100927. doi:10.1016/j.jup.2019.100927 es_ES
dc.description.references Herter, K., & Wayland, S. (2010). Residential response to critical-peak pricing of electricity: California evidence. Energy, 35(4), 1561-1567. doi:10.1016/j.energy.2009.07.022 es_ES
dc.description.references Qiu, Y., Kirkeide, L., & Wang, Y. D. (2016). Effects of Voluntary Time-of-Use Pricing on Summer Electricity Usage of Business Customers. Environmental and Resource Economics, 69(2), 417-440. doi:10.1007/s10640-016-0084-5 es_ES
dc.description.references Aubin, C., Fougère, D., Husson, E., & Ivaldi, M. (1995). Real-time pricing of electricity for residential customers: Econometric analysis of an experiment. Journal of Applied Econometrics, 10(S1), S171-S191. doi:10.1002/jae.3950100510 es_ES
dc.description.references Pellerano, J. A., Price, M. K., Puller, S. L., & Sánchez, G. E. (2016). Do Extrinsic Incentives Undermine Social Norms? Evidence from a Field Experiment in Energy Conservation. Environmental and Resource Economics, 67(3), 413-428. doi:10.1007/s10640-016-0094-3 es_ES
dc.description.references Brent, D. A., & Ward, M. B. (2019). Price perceptions in water demand. Journal of Environmental Economics and Management, 98, 102266. doi:10.1016/j.jeem.2019.102266 es_ES
dc.description.references Castledine, A., Moeltner, K., Price, M. K., & Stoddard, S. (2014). Free to choose: Promoting conservation by relaxing outdoor watering restrictions. Journal of Economic Behavior & Organization, 107, 324-343. doi:10.1016/j.jebo.2014.02.004 es_ES
dc.description.references Ferraro, P. J., Miranda, J. J., & Price, M. K. (2011). The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment. American Economic Review, 101(3), 318-322. doi:10.1257/aer.101.3.318 es_ES
dc.description.references Crone, D. L., & Williams, L. A. (2017). Crowdsourcing participants for psychological research in Australia: A test of Microworkers. Australian Journal of Psychology, 69(1), 39-47. doi:10.1111/ajpy.12110 es_ES
dc.description.references Hirth, M, T. HoBfeld, and P. Tran-Gia, P. (2011). Anatomy of a crowdsourcing platform - using the example of microworkers.com. Fifth Int. Conf. Innovat. Mobile Internet Serv. Ubiquitous Comput. (IMIS), June 2011, 322-329. doi: 10.1109/IMIS.2011.89. es_ES
dc.description.references Abeler, J., Nosenzo, D., & Raymond, C. (2019). Preferences for Truth‐Telling. Econometrica, 87(4), 1115-1153. doi:10.3982/ecta14673 es_ES
dc.description.references Horton, J. J., Rand, D. G., & Zeckhauser, R. J. (2011). The online laboratory: conducting experiments in a real labor market. Experimental Economics, 14(3), 399-425. doi:10.1007/s10683-011-9273-9 es_ES
dc.description.references Tversky, A., & Kahneman, D. (1986). Rational Choice and the Framing of Decisions. The Journal of Business, 59(S4), S251. doi:10.1086/296365 es_ES
dc.description.references Andreoni, J. (1995). Warm-Glow versus Cold-Prickle: The Effects of Positive and Negative Framing on Cooperation in Experiments. The Quarterly Journal of Economics, 110(1), 1-21. doi:10.2307/2118508 es_ES
dc.description.references Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-subject and within-subject design. Journal of Economic Behavior & Organization, 81(1), 1-8. doi:10.1016/j.jebo.2011.08.009 es_ES
dc.description.references Greenwald, A. G. (1976). Within-subjects designs: To use or not to use? Psychological Bulletin, 83(2), 314-320. doi:10.1037/0033-2909.83.2.314 es_ES
dc.description.references Inman, D., & Jeffrey, P. (2006). A review of residential water conservation tool performance and influences on implementation effectiveness. Urban Water Journal, 3(3), 127-143. doi:10.1080/15730620600961288 es_ES
dc.description.references Snyder, M. (1974). Self-monitoring of expressive behavior. Journal of Personality and Social Psychology, 30(4), 526-537. doi:10.1037/h0037039 es_ES
dc.description.references Arbués, F., Garcı́a-Valiñas, M. Á., & Martı́nez-Espiñeira, R. (2003). Estimation of residential water demand: a state-of-the-art review. The Journal of Socio-Economics, 32(1), 81-102. doi:10.1016/s1053-5357(03)00005-2 es_ES
dc.description.references Dalhuisen, J. M., Florax, R. J. G. M., de Groot, H. L. F., & Nijkamp, P. (2003). Price and Income Elasticities of Residential Water Demand: A Meta-Analysis. Land Economics, 79(2), 292-308. doi:10.2307/3146872 es_ES
dc.description.references Garrone, P., Grilli, L., & Marzano, R. (2020). Incentives to water conservation under scarcity: Comparing price and reward effects through stated preferences. Journal of Cleaner Production, 244, 118632. doi:10.1016/j.jclepro.2019.118632 es_ES
dc.description.references Vatn, A. (2010). An institutional analysis of payments for environmental services. Ecological Economics, 69(6), 1245-1252. doi:10.1016/j.ecolecon.2009.11.018 es_ES
dc.description.references Agthe, D. E., & Billings, R. B. (1987). Equity, Price Elasticity, and Household Income Under Increasing Block Rates for Water. American Journal of Economics and Sociology, 46(3), 273-286. doi:10.1111/j.1536-7150.1987.tb01966.x es_ES
dc.description.references Kallbekken, S., & Aasen, M. (2010). The demand for earmarking: Results from a focus group study. Ecological Economics, 69(11), 2183-2190. doi:10.1016/j.ecolecon.2010.06.003 es_ES
dc.description.references Sahin, O., Siems, R. S., Stewart, R. A., & Porter, M. G. (2016). Paradigm shift to enhanced water supply planning through augmented grids, scarcity pricing and adaptive factory water: A system dynamics approach. Environmental Modelling & Software, 75, 348-361. doi:10.1016/j.envsoft.2014.05.018 es_ES
dc.description.references Borenstein, S. (2012). Effective and Equitable Adoption of Opt-In Residential Dynamic Electricity Pricing. Review of Industrial Organization, 42(2), 127-160. doi:10.1007/s11151-012-9367-3 es_ES
dc.description.references Tembata, K., & Takeuchi, K. (2018). Collective decision making under drought: An empirical study of water resource management in Japan. Water Resources and Economics, 22, 19-31. doi:10.1016/j.wre.2017.11.001 es_ES
dc.description.references Maas, A., Goemans, C., Manning, D. T., Burkhardt, J., & Arabi, M. (2020). Complements of the house: Estimating demand-side linkages between residential water and electricity. Water Resources and Economics, 29, 100140. doi:10.1016/j.wre.2019.02.001 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem