- -

Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Griol-Barres, Israel es_ES
dc.contributor.author Milla, Sergio es_ES
dc.contributor.author Cebrián Ferriols, Antonio José es_ES
dc.contributor.author Fan, Huaan es_ES
dc.contributor.author Millet Roig, José es_ES
dc.date.accessioned 2021-05-22T03:32:05Z
dc.date.available 2021-05-22T03:32:05Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166654
dc.description.abstract [EN] Organizations, companies and start-ups need to cope with constant changes on the market which are difficult to predict. Therefore, the development of new systems to detect significant future changes is vital to make correct decisions in an organization and to discover new opportunities. A system based on business intelligence techniques is proposed to detect weak signals, that are related to future transcendental changes. While most known solutions are based on the use of structured data, the proposed system quantitatively detects these signals using heterogeneous and unstructured information from scientific, journalistic and social sources, applying text mining to analyze the documents and natural language processing to extract accurate results. The main contributions are that the system has been designed for any field, using different input datasets of documents, and with an automatic classification of categories for the detected keywords. In this research paper, results from the future of remote sensors are presented. Remote sensing services are providing new applications in observation and analysis of information remotely. This market is projected to witness a significant growth due to the increasing demand for services in commercial and defense industries. The system has obtained promising results, evaluated with two different methodologies, to help experts in the decision-making process and to discover new trends and opportunities. es_ES
dc.description.sponsorship This research is partially supported by EIT Climate-KIC of the European Institute of Technology (project EIT Climate-KIC Accelerator-TC_3.1.5_190607_P066-1A) and InnoCENS from Erasmus + (573965-EPP-1-2016-1-SE-EPPKA2-CBHE-JP). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject New sustainable business models es_ES
dc.subject Business intelligence es_ES
dc.subject Natural language processing es_ES
dc.subject Weak signals of the future es_ES
dc.subject Predictive models es_ES
dc.subject Text mining es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12197848 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/Erasmus+/573965-EPP-1-2016-1-SE-EPPKA2-CBHE-JP/EU/Enhancing innovation competences and entrepreneurial skills in engineering education/InnoCENS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EIT Climate-KIC//TC_3.1.5_190607_P066-1A/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Griol-Barres, I.; Milla, S.; Cebrián Ferriols, AJ.; Fan, H.; Millet Roig, J. (2020). Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing. Sustainability. 12(19):1-21. https://doi.org/10.3390/su12197848 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12197848 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\418317 es_ES
dc.contributor.funder EIT Climate-KIC es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Erasmus+ es_ES
dc.description.references Zahra, S. A., Gedajlovic, E., Neubaum, D. O., & Shulman, J. M. (2009). A typology of social entrepreneurs: Motives, search processes and ethical challenges. Journal of Business Venturing, 24(5), 519-532. doi:10.1016/j.jbusvent.2008.04.007 es_ES
dc.description.references Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635 es_ES
dc.description.references Report on Weak Signals Collection. TELMAP, European Commission Seventh Framework Project (IST-257822) https://cordis.europa.eu/docs/projects/cnect/2/257822/080/deliverables/001-D41Weaksignalscollectionfinal.doc es_ES
dc.description.references Dator, J. (2005). Universities without «quality» and quality without «universities». On the Horizon, 13(4), 199-215. doi:10.1108/10748120510627321 es_ES
dc.description.references Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40(3), 247-260. doi:10.1016/j.futures.2007.08.021 es_ES
dc.description.references Thorleuchter, D., Scheja, T., & Van den Poel, D. (2014). Semantic weak signal tracing. Expert Systems with Applications, 41(11), 5009-5016. doi:10.1016/j.eswa.2014.02.046 es_ES
dc.description.references Julien, P.-A., Andriambeloson, E., & Ramangalahy, C. (2004). Networks, weak signals and technological innovations among SMEs in the land-based transportation equipment sector. Entrepreneurship & Regional Development, 16(4), 251-269. doi:10.1080/0898562042000263249 es_ES
dc.description.references Xindong Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. doi:10.1109/tkde.2013.109 es_ES
dc.description.references Koivisto, R., Kulmala, I., & Gotcheva, N. (2016). Weak signals and damage scenarios — Systematics to identify weak signals and their sources related to mass transport attacks. Technological Forecasting and Social Change, 104, 180-190. doi:10.1016/j.techfore.2015.12.010 es_ES
dc.description.references Davis, J., & Groves, C. (2019). City/future in the making: Masterplanning London’s Olympic legacy as anticipatory assemblage. Futures, 109, 13-23. doi:10.1016/j.futures.2019.04.002 es_ES
dc.description.references Irvine, N., Nugent, C., Zhang, S., Wang, H., & NG, W. W. Y. (2019). Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments. Sensors, 20(1), 216. doi:10.3390/s20010216 es_ES
dc.description.references Huang, M., & Liu, Z. (2019). Research on Mechanical Fault Prediction Method Based on Multifeature Fusion of Vibration Sensing Data. Sensors, 20(1), 6. doi:10.3390/s20010006 es_ES
dc.description.references Awan, F. M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction. Sensors, 20(1), 322. doi:10.3390/s20010322 es_ES
dc.description.references MohamadiBaghmolaei, R., Mozafari, N., & Hamzeh, A. (2017). Continuous states latency aware influence maximization in social networks. AI Communications, 30(2), 99-116. doi:10.3233/aic-170720 es_ES
dc.description.references McGrath, J., & Fischetti, J. (2019). What if compulsory schooling was a 21st century invention? Weak signals from a systematic review of the literature. International Journal of Educational Research, 95, 212-226. doi:10.1016/j.ijer.2019.02.006 es_ES
dc.description.references Chao, W., Jiang, X., Luo, Z., Hu, Y., & Ma, W. (2019). Interpretable Charge Prediction for Criminal Cases with Dynamic Rationale Attention. Journal of Artificial Intelligence Research, 66, 743-764. doi:10.1613/jair.1.11377 es_ES
dc.description.references Van Veen, B. L., Roland Ortt, J., & Badke-Schaub, P. G. (2019). Compensating for perceptual filters in weak signal assessments. Futures, 108, 1-11. doi:10.1016/j.futures.2019.02.018 es_ES
dc.description.references Thorleuchter, D., & Van den Poel, D. (2015). Idea mining for web-based weak signal detection. Futures, 66, 25-34. doi:10.1016/j.futures.2014.12.007 es_ES
dc.description.references Rowe, E., Wright, G., & Derbyshire, J. (2017). Enhancing horizon scanning by utilizing pre-developed scenarios: Analysis of current practice and specification of a process improvement to aid the identification of important ‘weak signals’. Technological Forecasting and Social Change, 125, 224-235. doi:10.1016/j.techfore.2017.08.001 es_ES
dc.description.references Yoon, J. (2012). Detecting weak signals for long-term business opportunities using text mining of Web news. Expert Systems with Applications, 39(16), 12543-12550. doi:10.1016/j.eswa.2012.04.059 es_ES
dc.description.references Yoo, S., & Won, D. (2018). Simulation of Weak Signals of Nanotechnology Innovation in Complex System. Sustainability, 10(2), 486. doi:10.3390/su10020486 es_ES
dc.description.references Suh, J. (2018). Generating Future-Oriented Energy Policies and Technologies from the Multidisciplinary Group Discussions by Text-Mining-Based Identification of Topics and Experts. Sustainability, 10(10), 3709. doi:10.3390/su10103709 es_ES
dc.description.references Kwon, L.-N., Park, J.-H., Moon, Y.-H., Lee, B., Shin, Y., & Kim, Y.-K. (2018). Weak signal detecting of industry convergence using information of products and services of global listed companies - focusing on growth engine industry in South Korea -. Journal of Open Innovation: Technology, Market, and Complexity, 4(1). doi:10.1186/s40852-018-0083-6 es_ES
dc.description.references Ben-Porat, O., Hirsch, S., Kuchi, L., Elad, G., Reichart, R., & Tennenholtz, M. (2020). Predicting Strategic Behavior from Free Text. Journal of Artificial Intelligence Research, 68. doi:10.1613/jair.1.11849 es_ES
dc.description.references Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & Management, 54(1), 38-56. doi:10.1016/j.im.2016.03.009 es_ES
dc.description.references Ilmola, L., & Kuusi, O. (2006). Filters of weak signals hinder foresight: Monitoring weak signals efficiently in corporate decision-making. Futures, 38(8), 908-924. doi:10.1016/j.futures.2005.12.019 es_ES
dc.description.references Doulamis, N. D., Doulamis, A. D., Kokkinos, P., & Varvarigos, E. M. (2016). Event Detection in Twitter Microblogging. IEEE Transactions on Cybernetics, 46(12), 2810-2824. doi:10.1109/tcyb.2015.2489841 es_ES
dc.description.references Atefeh, F., & Khreich, W. (2013). A Survey of Techniques for Event Detection in Twitter. Computational Intelligence, 31(1), 132-164. doi:10.1111/coin.12017 es_ES
dc.description.references Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB NoSQL database. Journal of Big Data, 4(1). doi:10.1186/s40537-017-0068-5 es_ES
dc.description.references Bjeladinovic, S. (2018). A fresh approach for hybrid SQL/NoSQL database design based on data structuredness. Enterprise Information Systems, 12(8-9), 1202-1220. doi:10.1080/17517575.2018.1446102 es_ES
dc.description.references Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a non-relation databases. Transportation Research Procedia, 40, 170-177. doi:10.1016/j.trpro.2019.07.027 es_ES
dc.description.references Yangui, R., Nabli, A., & Gargouri, F. (2016). Automatic Transformation of Data Warehouse Schema to NoSQL Data Base: Comparative Study. Procedia Computer Science, 96, 255-264. doi:10.1016/j.procs.2016.08.138 es_ES
dc.description.references Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219-223. doi:10.1108/00330330610681295 es_ES
dc.description.references Griol-Barres, I., Milla, S., & Millet, J. (2019). Implementación de un sistema de detección de señales débiles de futuro mediante técnicas de minería de textos. Revista española de Documentación Científica, 42(2), 234. doi:10.3989/redc.2019.2.1599 es_ES
dc.description.references Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311-323. doi:10.1016/j.eswa.2016.03.043 es_ES
dc.description.references Mendonça, S., Pina e Cunha, M., Kaivo-oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201-218. doi:10.1016/s0016-3287(03)00148-4 es_ES
dc.description.references Ishikiriyama, C. S., Miro, D., & Gomes, C. F. S. (2015). Text Mining Business Intelligence: A small sample of what words can say. Procedia Computer Science, 55, 261-267. doi:10.1016/j.procs.2015.07.044 es_ES
dc.description.references Yuen, J. (2018). Comparison of Impact Factor, Eigenfactor Metrics, and SCImago Journal Rank Indicator and h-index for Neurosurgical and Spinal Surgical Journals. World Neurosurgery, 119, e328-e337. doi:10.1016/j.wneu.2018.07.144 es_ES
dc.description.references Thomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., … Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327-374. doi:10.1613/jair.1.11485 es_ES
dc.description.references Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. doi:10.1016/j.ipm.2006.11.011 es_ES
dc.description.references Gergelova, M. B., Labant, S., Kuzevic, S., Kuzevicova, Z., & Pavolova, H. (2020). Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia. Sustainability, 12(17), 6847. doi:10.3390/su12176847 es_ES
dc.description.references Badmos, O., Rienow, A., Callo-Concha, D., Greve, K., & Jürgens, C. (2018). Urban Development in West Africa—Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern and Process. Remote Sensing, 10(7), 1044. doi:10.3390/rs10071044 es_ES
dc.description.references Thomson, E., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A., Peprah, T., … Doughty, C. (2018). Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. Remote Sensing, 10(10), 1532. doi:10.3390/rs10101532 es_ES
dc.description.references Samasse, K., Hanan, N., Tappan, G., & Diallo, Y. (2018). Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sensing, 10(11), 1785. doi:10.3390/rs10111785 es_ES
dc.description.references Anchang, J. Y., Prihodko, L., Kaptué, A. T., Ross, C. W., Ji, W., Kumar, S. S., … Hanan, N. P. (2019). Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sensing, 11(5), 576. doi:10.3390/rs11050576 es_ES
dc.description.references Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R. H., & McNally, A. (2019). Uncertainties in Evapotranspiration Estimates over West Africa. Remote Sensing, 11(8), 892. doi:10.3390/rs11080892 es_ES
dc.description.references Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928. doi:10.3390/rs11242928 es_ES
dc.description.references Meftah, M., Damé, L., Keckhut, P., Bekki, S., Sarkissian, A., Hauchecorne, A., … Bui, A. (2019). UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing, 12(1), 92. doi:10.3390/rs12010092 es_ES
dc.description.references Zhang, W., Yoshida, T., & Tang, X. (2008). Text classification based on multi-word with support vector machine. Knowledge-Based Systems, 21(8), 879-886. doi:10.1016/j.knosys.2008.03.044 es_ES
dc.description.references Griol-Barres, I., Milla, S., & Millet, J. (2020). Improving strategic decision making by the detection of weak signals in heterogeneous documents by text mining techniques. AI Communications, 32(5-6), 347-360. doi:10.3233/aic-190625 es_ES
dc.description.references Dzedzickis, A., Kaklauskas, A., & Bucinskas, V. (2020). Human Emotion Recognition: Review of Sensors and Methods. Sensors, 20(3), 592. doi:10.3390/s20030592 es_ES
dc.description.references Haegeman, K., Marinelli, E., Scapolo, F., Ricci, A., & Sokolov, A. (2013). Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration? Technological Forecasting and Social Change, 80(3), 386-397. doi:10.1016/j.techfore.2012.10.002 es_ES
dc.description.references Silva, V. O., Martins, C. A. P. S., & Ekel, P. Y. (2018). An Efficient Parallel Implementation of an Optimized Simplex Method in GPU-CUDA. IEEE Latin America Transactions, 16(2), 564-573. doi:10.1109/tla.2018.8327414 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem