- -

Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Saldarriaga, Juan es_ES
dc.contributor.author Salcedo, Camilo es_ES
dc.contributor.author Solarte, Laura es_ES
dc.contributor.author Pulgarín, Laura es_ES
dc.contributor.author Rivera, Maria Laura es_ES
dc.contributor.author Camacho, Mariana es_ES
dc.contributor.author Iglesias Rey, Pedro Luís es_ES
dc.contributor.author Martínez-Solano, F. Javier es_ES
dc.contributor.author Cunha, Maria es_ES
dc.date.accessioned 2021-05-25T03:31:52Z
dc.date.available 2021-05-25T03:31:52Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166734
dc.description.abstract [EN] In recent years, there has been an increase in the frequency of urban floods as a result of three determinant factors: the reduction in systems' capacity due to aging, a changing environment that has resulted in alterations in the hydrological cycle, and the reduction of the permeability of watersheds due to urban growth. Due to this, a question that every urban area must answer is: Are we ready to face these new challenges? The renovation of all the pipes that compose the drainage system is not a feasible solution, and, therefore, the use of new solutions is an increasing trend, leading to a new operational paradigm where water is stored in the system and released at a controlled rate. Hence, technologies, such as stormwater tanks, are being implemented in different cities. This research sought to understand how Climate Change would affect future precipitation, and based on the results, applied two different approaches to determine the optimal location and sizing of storage units, through the application of the Simulated Annealing and Pseudo-Genetic Algorithms. In this process, a strong component of computational modeling was applied in order to allow the optimization algorithms to efficiently reach near-optimal solutions. These approaches were tested in two stormwater networks at Bogota, Colombia, considering three different rainfall scenarios. es_ES
dc.description.sponsorship This research was funded by MEXICHEM-PAVCO and COLCIENCIAS, grant number 565263339028 es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Climate change es_ES
dc.subject Stormwater storage tanks es_ES
dc.subject Simulated annealing es_ES
dc.subject Pseudo-genetic algorithm es_ES
dc.subject SWMM es_ES
dc.subject Toolkit es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12092491 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//565263339028/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Saldarriaga, J.; Salcedo, C.; Solarte, L.; Pulgarín, L.; Rivera, ML.; Camacho, M.; Iglesias Rey, PL.... (2020). Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change. Water. 12(9):1-24. https://doi.org/10.3390/w12092491 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12092491 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\429637 es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Willems, P., Arnbjerg-Nielsen, K., Olsson, J., & Nguyen, V. T. V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmospheric Research, 103, 106-118. doi:10.1016/j.atmosres.2011.04.003 es_ES
dc.description.references Padulano, R., Reder, A., & Rianna, G. (2019). An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrological Processes, 33(14), 2020-2036. doi:10.1002/hyp.13449 es_ES
dc.description.references Zeroual, A., Assani, A. A., Meddi, M., & Alkama, R. (2018). Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Climate Dynamics, 52(1-2), 227-243. doi:10.1007/s00382-018-4128-0 es_ES
dc.description.references Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., … Nguyen, V.-T.-V. (2013). Impacts of climate change on rainfall extremes and urban drainage systems: a review. Water Science and Technology, 68(1), 16-28. doi:10.2166/wst.2013.251 es_ES
dc.description.references Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. D. (2005). Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science and Technology, 52(5), 265-273. doi:10.2166/wst.2005.0142 es_ES
dc.description.references Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935 es_ES
dc.description.references Lee, E. H., & Kim, J. H. (2017). Design and Operation of Decentralized Reservoirs in Urban Drainage Systems. Water, 9(4), 246. doi:10.3390/w9040246 es_ES
dc.description.references Kändler, N., Annus, I., Vassiljev, A., & Puust, R. (2019). Peak flow reduction from small catchments using smart inlets. Urban Water Journal, 17(7), 577-586. doi:10.1080/1573062x.2019.1611888 es_ES
dc.description.references Miao, Z.-T., Han, M., & Hashemi, S. (2019). The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang, China. Environmental Earth Sciences, 78(2). doi:10.1007/s12665-018-8016-z es_ES
dc.description.references Martínez, C., Sanchez, A., Galindo, R., Mulugeta, A., Vojinovic, Z., & Galvis, A. (2018). Configuring Green Infrastructure for Urban Runoff and Pollutant Reduction Using an Optimal Number of Units. Water, 10(11), 1528. doi:10.3390/w10111528 es_ES
dc.description.references Cunha, M. C., Zeferino, J. A., Simões, N. E., Santos, G. L., & Saldarriaga, J. G. (2017). A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. International Journal of Sustainable Development and Planning, 12(01), 122-132. doi:10.2495/sdp-v12-n1-122-132 es_ES
dc.description.references Ngamalieu-Nengoue, U., Iglesias-Rey, P., Martínez-Solano, F., Mora-Meliá, D., & Saldarriaga Valderrama, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water, 11(3), 515. doi:10.3390/w11030515 es_ES
dc.description.references Cimorelli, L., Morlando, F., Cozzolino, L., Covelli, C., Della Morte, R., & Pianese, D. (2016). Optimal Positioning and Sizing of Detention Tanks within Urban Drainage Networks. Journal of Irrigation and Drainage Engineering, 142(1), 04015028. doi:10.1061/(asce)ir.1943-4774.0000927 es_ES
dc.description.references Duan, H.-F., Li, F., & Yan, H. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources Management, 30(13), 4635-4648. doi:10.1007/s11269-016-1444-1 es_ES
dc.description.references Iglesias-Rey, P. L., Martínez-Solano, F. J., Saldarriaga, J. G., & Navarro-Planas, V. R. (2017). Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 186, 617-625. doi:10.1016/j.proeng.2017.03.278 es_ES
dc.description.references Martínez-Solano, F., Iglesias-Rey, P., Saldarriaga, J., & Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water, 8(6), 259. doi:10.3390/w8060259 es_ES
dc.description.references García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., & Ocampo-Martinez, C. (2015). Modeling and real-time control of urban drainage systems: A review. Advances in Water Resources, 85, 120-132. doi:10.1016/j.advwatres.2015.08.007 es_ES
dc.description.references Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., … Roeckner, E. (2013). Atmospheric component of the MPI‐M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5(2), 146-172. doi:10.1002/jame.20015 es_ES
dc.description.references Magi, B. I. (2015). Global Lightning Parameterization from CMIP5 Climate Model Output. Journal of Atmospheric and Oceanic Technology, 32(3), 434-452. doi:10.1175/jtech-d-13-00261.1 es_ES
dc.description.references Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., … Zadeh, N. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 25(19), 6646-6665. doi:10.1175/jcli-d-11-00560.1 es_ES
dc.description.references Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., … Chauvin, F. (2012). The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40(9-10), 2091-2121. doi:10.1007/s00382-011-1259-y es_ES
dc.description.references Ackerley, D., & Dommenget, D. (2016). Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geoscientific Model Development, 9(6), 2077-2098. doi:10.5194/gmd-9-2077-2016 es_ES
dc.description.references Yazdi, J., Lee, E. H., & Kim, J. H. (2015). Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. Journal of Water Resources Planning and Management, 141(8), 04014091. doi:10.1061/(asce)wr.1943-5452.0000491 es_ES
dc.description.references Javier Martínez-Solano, F., Iglesias-Rey, P. L., Mora Meliá, D., & Ribelles-Aguilar, J. V. (2018). Combining Skeletonization, Setpoint Curves, and Heuristic Algorithms to Define District Metering Areas in the Battle of Water Networks District Metering Areas. Journal of Water Resources Planning and Management, 144(6), 04018023. doi:10.1061/(asce)wr.1943-5452.0000938 es_ES
dc.description.references Baek, H., Ryu, J., Oh, J., & Kim, T.-H. (2015). Optimal design of multi-storage network for combined sewer overflow management using a diversity-guided, cyclic-networking particle swarm optimizer – A case study in the Gunja subcatchment area, Korea. Expert Systems with Applications, 42(20), 6966-6975. doi:10.1016/j.eswa.2015.04.049 es_ES
dc.description.references McEnery, J. A., & Morris, C. D. (2011). Muskingum optimisation used for evaluation of regionalised stormwater detention. Journal of Flood Risk Management, 5(1), 49-61. doi:10.1111/j.1753-318x.2011.01125.x es_ES
dc.description.references Cunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location and sizing of storage units in a drainage system. Environmental Modelling & Software, 83, 155-166. doi:10.1016/j.envsoft.2016.05.015 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Del Giudice, G., & Padulano, R. (2016). Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm. Acta Geophysica, 64(5), 1755-1778. doi:10.1515/acgeo-2016-0062 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem