- -

Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change

Mostrar el registro completo del ítem

Saldarriaga, J.; Salcedo, C.; Solarte, L.; Pulgarín, L.; Rivera, ML.; Camacho, M.; Iglesias Rey, PL.... (2020). Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change. Water. 12(9):1-24. https://doi.org/10.3390/w12092491

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166734

Ficheros en el ítem

Metadatos del ítem

Título: Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change
Autor: Saldarriaga, Juan Salcedo, Camilo Solarte, Laura Pulgarín, Laura Rivera, Maria Laura Camacho, Mariana Iglesias Rey, Pedro Luís Martínez-Solano, F. Javier Cunha, Maria
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] In recent years, there has been an increase in the frequency of urban floods as a result of three determinant factors: the reduction in systems' capacity due to aging, a changing environment that has resulted in ...[+]
Palabras clave: Climate change , Stormwater storage tanks , Simulated annealing , Pseudo-genetic algorithm , SWMM , Toolkit
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12092491
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12092491
Código del Proyecto:
info:eu-repo/grantAgreement/COLCIENCIAS//565263339028/
Agradecimientos:
This research was funded by MEXICHEM-PAVCO and COLCIENCIAS, grant number 565263339028
Tipo: Artículo

References

Willems, P., Arnbjerg-Nielsen, K., Olsson, J., & Nguyen, V. T. V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmospheric Research, 103, 106-118. doi:10.1016/j.atmosres.2011.04.003

Padulano, R., Reder, A., & Rianna, G. (2019). An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrological Processes, 33(14), 2020-2036. doi:10.1002/hyp.13449

Zeroual, A., Assani, A. A., Meddi, M., & Alkama, R. (2018). Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Climate Dynamics, 52(1-2), 227-243. doi:10.1007/s00382-018-4128-0 [+]
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., & Nguyen, V. T. V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmospheric Research, 103, 106-118. doi:10.1016/j.atmosres.2011.04.003

Padulano, R., Reder, A., & Rianna, G. (2019). An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrological Processes, 33(14), 2020-2036. doi:10.1002/hyp.13449

Zeroual, A., Assani, A. A., Meddi, M., & Alkama, R. (2018). Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Climate Dynamics, 52(1-2), 227-243. doi:10.1007/s00382-018-4128-0

Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., … Nguyen, V.-T.-V. (2013). Impacts of climate change on rainfall extremes and urban drainage systems: a review. Water Science and Technology, 68(1), 16-28. doi:10.2166/wst.2013.251

Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. D. (2005). Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science and Technology, 52(5), 265-273. doi:10.2166/wst.2005.0142

Ngamalieu-Nengoue, U. A., Martínez-Solano, F. J., Iglesias-Rey, P. L., & Mora-Meliá, D. (2019). Multi-Objective Optimization for Urban Drainage or Sewer Networks Rehabilitation through Pipes Substitution and Storage Tanks Installation. Water, 11(5), 935. doi:10.3390/w11050935

Lee, E. H., & Kim, J. H. (2017). Design and Operation of Decentralized Reservoirs in Urban Drainage Systems. Water, 9(4), 246. doi:10.3390/w9040246

Kändler, N., Annus, I., Vassiljev, A., & Puust, R. (2019). Peak flow reduction from small catchments using smart inlets. Urban Water Journal, 17(7), 577-586. doi:10.1080/1573062x.2019.1611888

Miao, Z.-T., Han, M., & Hashemi, S. (2019). The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang, China. Environmental Earth Sciences, 78(2). doi:10.1007/s12665-018-8016-z

Martínez, C., Sanchez, A., Galindo, R., Mulugeta, A., Vojinovic, Z., & Galvis, A. (2018). Configuring Green Infrastructure for Urban Runoff and Pollutant Reduction Using an Optimal Number of Units. Water, 10(11), 1528. doi:10.3390/w10111528

Cunha, M. C., Zeferino, J. A., Simões, N. E., Santos, G. L., & Saldarriaga, J. G. (2017). A decision support model for the optimal siting and sizing of storage units in stormwater drainage systems. International Journal of Sustainable Development and Planning, 12(01), 122-132. doi:10.2495/sdp-v12-n1-122-132

Ngamalieu-Nengoue, U., Iglesias-Rey, P., Martínez-Solano, F., Mora-Meliá, D., & Saldarriaga Valderrama, J. (2019). Urban Drainage Network Rehabilitation Considering Storm Tank Installation and Pipe Substitution. Water, 11(3), 515. doi:10.3390/w11030515

Cimorelli, L., Morlando, F., Cozzolino, L., Covelli, C., Della Morte, R., & Pianese, D. (2016). Optimal Positioning and Sizing of Detention Tanks within Urban Drainage Networks. Journal of Irrigation and Drainage Engineering, 142(1), 04015028. doi:10.1061/(asce)ir.1943-4774.0000927

Duan, H.-F., Li, F., & Yan, H. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resources Management, 30(13), 4635-4648. doi:10.1007/s11269-016-1444-1

Iglesias-Rey, P. L., Martínez-Solano, F. J., Saldarriaga, J. G., & Navarro-Planas, V. R. (2017). Pseudo-genetic Model Optimization for Rehabilitation of Urban Storm-water Drainage Networks. Procedia Engineering, 186, 617-625. doi:10.1016/j.proeng.2017.03.278

Martínez-Solano, F., Iglesias-Rey, P., Saldarriaga, J., & Vallejo, D. (2016). Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water, 8(6), 259. doi:10.3390/w8060259

García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., & Ocampo-Martinez, C. (2015). Modeling and real-time control of urban drainage systems: A review. Advances in Water Resources, 85, 120-132. doi:10.1016/j.advwatres.2015.08.007

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., … Roeckner, E. (2013). Atmospheric component of the MPI‐M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5(2), 146-172. doi:10.1002/jame.20015

Magi, B. I. (2015). Global Lightning Parameterization from CMIP5 Climate Model Output. Journal of Atmospheric and Oceanic Technology, 32(3), 434-452. doi:10.1175/jtech-d-13-00261.1

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., … Zadeh, N. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 25(19), 6646-6665. doi:10.1175/jcli-d-11-00560.1

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., … Chauvin, F. (2012). The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 40(9-10), 2091-2121. doi:10.1007/s00382-011-1259-y

Ackerley, D., & Dommenget, D. (2016). Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geoscientific Model Development, 9(6), 2077-2098. doi:10.5194/gmd-9-2077-2016

Yazdi, J., Lee, E. H., & Kim, J. H. (2015). Stochastic Multiobjective Optimization Model for Urban Drainage Network Rehabilitation. Journal of Water Resources Planning and Management, 141(8), 04014091. doi:10.1061/(asce)wr.1943-5452.0000491

Javier Martínez-Solano, F., Iglesias-Rey, P. L., Mora Meliá, D., & Ribelles-Aguilar, J. V. (2018). Combining Skeletonization, Setpoint Curves, and Heuristic Algorithms to Define District Metering Areas in the Battle of Water Networks District Metering Areas. Journal of Water Resources Planning and Management, 144(6), 04018023. doi:10.1061/(asce)wr.1943-5452.0000938

Baek, H., Ryu, J., Oh, J., & Kim, T.-H. (2015). Optimal design of multi-storage network for combined sewer overflow management using a diversity-guided, cyclic-networking particle swarm optimizer – A case study in the Gunja subcatchment area, Korea. Expert Systems with Applications, 42(20), 6966-6975. doi:10.1016/j.eswa.2015.04.049

McEnery, J. A., & Morris, C. D. (2011). Muskingum optimisation used for evaluation of regionalised stormwater detention. Journal of Flood Risk Management, 5(1), 49-61. doi:10.1111/j.1753-318x.2011.01125.x

Cunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location and sizing of storage units in a drainage system. Environmental Modelling & Software, 83, 155-166. doi:10.1016/j.envsoft.2016.05.015

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671

Del Giudice, G., & Padulano, R. (2016). Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm. Acta Geophysica, 64(5), 1755-1778. doi:10.1515/acgeo-2016-0062

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem