- -

Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sousa, Mayko Rannany S. es_ES
dc.contributor.author Lora-García, Jaime es_ES
dc.contributor.author López Pérez, Maria Fernanda es_ES
dc.contributor.author Heran, Marc es_ES
dc.date.accessioned 2021-05-25T03:32:12Z
dc.date.available 2021-05-25T03:32:12Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166738
dc.description.abstract [EN] In this study, membrane fouling caused by paperboard mill treated effluent (PMTE) was investigated based on a dead-end ultrafiltration (UF) pilot-scale study. The membranes employed were commercial hydrophobic UF membranes made of polyethersulfone (PES) with a molecular weight cut-off of 10 kDa, 50 kDa, and 100 kDa. Membrane fouling mechanism during dead-end filtration, chemical analysis, field emission scanning electron microscopy (FESEM), energy-dispersive spectrophotometry (EDS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and 3D fluorescence excitation emission matrix (3DEEM) analysis were applied to understand which fraction of the dissolved and colloidal substances (DCS) caused the membrane fouling. The results indicated that the phenomenon controlling fouling mechanism tended to be cake layer formation (R-2 >= 0.98) for all membranes tested. The 3DEEM results indicate that the majority of the organic foulants with fluorescence characteristics on the membrane were colloidal proteins (protein-like substances I+II) and macromolecular proteins (soluble microbial products, SMP-like substances). In addition, polysaccharide (cellulosic species), fatty and resin acid substances were identified on the fouled membrane by the ATR-FTIR analysis and play an important role in membrane fouling. In addition, the FESEM and EDS analyses indicate that the presence of inorganic foulants on the membrane surfaces, such as metal ions and especially Ca2+, can accelerate membrane fouling, whereas Mg and Si are linked to reversible fouling. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ultrafiltration es_ES
dc.subject Paper mill effluent es_ES
dc.subject Membrane fouling es_ES
dc.subject Foulants identification es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12020365 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Sousa, MRS.; Lora-García, J.; López Pérez, MF.; Heran, M. (2020). Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent. Water. 12(2):1-27. https://doi.org/10.3390/w12020365 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12020365 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\402423 es_ES
dc.description.references Key Statistics Report 2017|CEPI—CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017 es_ES
dc.description.references Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968 es_ES
dc.description.references Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64. doi:10.1016/j.jece.2013.03.007 es_ES
dc.description.references Ordóñez, R., Hermosilla, D., San Pío, I., & Blanco, A. (2010). Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill. Water Science and Technology, 62(7), 1694-1703. doi:10.2166/wst.2010.933 es_ES
dc.description.references Rudolph, G., Schagerlöf, H., Morkeberg Krogh, K., Jönsson, A.-S., & Lipnizki, F. (2018). Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes, 8(4), 91. doi:10.3390/membranes8040091 es_ES
dc.description.references Bayr, S., & Rintala, J. (2012). Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Research, 46(15), 4713-4720. doi:10.1016/j.watres.2012.06.033 es_ES
dc.description.references Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391 es_ES
dc.description.references Puro, L., Kallioinen, M., Mänttäri, M., Natarajan, G., C. Cameron, D., & Nyström, M. (2010). Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination, 264(3), 249-255. doi:10.1016/j.desal.2010.06.034 es_ES
dc.description.references Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254 es_ES
dc.description.references Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055 es_ES
dc.description.references Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017 es_ES
dc.description.references Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2 es_ES
dc.description.references Winter, J., Barbeau, B., & Bérubé, P. (2017). Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance. Membranes, 7(3), 34. doi:10.3390/membranes7030034 es_ES
dc.description.references Kossar, M. J., Amaral, K. J., Martinelli, S. S., & Erbe, M. C. L. (2013). Proposal for water reuse in the Kraft pulp and paper industry. Water Practice and Technology, 8(3-4), 359-374. doi:10.2166/wpt.2013.036 es_ES
dc.description.references Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018 es_ES
dc.description.references Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y., & Pelton, R. (2012). DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 7(4). doi:10.15376/biores.7.4.6109-6193 es_ES
dc.description.references Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1 es_ES
dc.description.references Wang, Z., Wu, Z., & Tang, S. (2009). Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6), 1533-1540. doi:10.1016/j.watres.2008.12.033 es_ES
dc.description.references Tian, J., Yu, H., Shen, Y., Shi, W., Liu, D., Gao, S., & Cui, F. (2015). Identification of irreversible UF membrane foulants by fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination and Water Treatment, 57(46), 21794-21805. doi:10.1080/19443994.2015.1127783 es_ES
dc.description.references Jacquin, C., Teychene, B., Lemee, L., Lesage, G., & Heran, M. (2018). Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment. Biochemical Engineering Journal, 132, 169-181. doi:10.1016/j.bej.2017.12.016 es_ES
dc.description.references Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi:10.1021/es034354c es_ES
dc.description.references Peiris, R. H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P. M., & Legge, R. L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. doi:10.1016/j.watres.2009.09.036 es_ES
dc.description.references Peldszus, S., Hallé, C., Peiris, R. H., Hamouda, M., Jin, X., Legge, R. L., … Huck, P. M. (2011). Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Research, 45(16), 5161-5170. doi:10.1016/j.watres.2011.07.022 es_ES
dc.description.references Yu, H., Qu, F., Liang, H., Han, Z., Ma, J., Shao, S., … Li, G. (2014). Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination, 337, 67-75. doi:10.1016/j.desal.2014.01.014 es_ES
dc.description.references Liu, Y., Bo, S., Zhu, Y., & Zhang, W. (2003). Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 44(23), 7209-7220. doi:10.1016/j.polymer.2003.08.037 es_ES
dc.description.references Howe, K. J., Marwah, A., Chiu, K.-P., & Adham, S. S. (2006). Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 40(24), 7908-7913. doi:10.1021/es0616480 es_ES
dc.description.references Chang, I.-S., & Kim, S.-N. (2005). Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3-4), 1307-1314. doi:10.1016/j.procbio.2004.06.019 es_ES
dc.description.references Teychene, B., Collet, G., & Gallard, H. (2016). Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane. Journal of Membrane Science, 505, 185-193. doi:10.1016/j.memsci.2016.01.039 es_ES
dc.description.references Bowen, W. R., Calvo, J. I., & Hernández, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153-165. doi:10.1016/0376-7388(94)00295-a es_ES
dc.description.references Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028 es_ES
dc.description.references Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). The decrease of UV absorbance as an indicator of TOX formation. Water Research, 31(4), 946-949. doi:10.1016/s0043-1354(96)00393-4 es_ES
dc.description.references Archer, A. D., & Singer, P. C. (2006). An evaluation of the relationship between SUVA and NOM coagulation using the ICR database. Journal - American Water Works Association, 98(7), 110-123. doi:10.1002/j.1551-8833.2006.tb07715.x es_ES
dc.description.references Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced Coagulation: US Requirements and a Broader View. Water Science and Technology, 40(9), 63-70. doi:10.2166/wst.1999.0444 es_ES
dc.description.references Martínez, C., Gómez, V., Pocurull, E., & Borrull, F. (2014). Characterization of organic fouling in reverse osmosis membranes by headspace solid phase microextraction and gas chromatography–mass spectrometry. Water Science and Technology, 71(1), 117-125. doi:10.2166/wst.2014.475 es_ES
dc.description.references Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032 es_ES
dc.description.references Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95, 205-219. doi:10.1016/j.watres.2016.03.021 es_ES
dc.description.references Shao, S., Liang, H., Qu, F., Yu, H., Li, K., & Li, G. (2014). Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. Journal of Membrane Science, 464, 33-42. doi:10.1016/j.memsci.2014.03.071 es_ES
dc.description.references Goletz, C., Wagner, M., Grübel, A., Schmidt, W., Korf, N., & Werner, P. (2011). Standardization of fluorescence excitation–emission-matrices in aquatic milieu. Talanta, 85(1), 650-656. doi:10.1016/j.talanta.2011.04.045 es_ES
dc.description.references Park, M., & Snyder, S. A. (2018). Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere, 193, 530-537. doi:10.1016/j.chemosphere.2017.11.069 es_ES
dc.description.references Jacquin, C., Lesage, G., Traber, J., Pronk, W., & Heran, M. (2017). Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Research, 118, 82-92. doi:10.1016/j.watres.2017.04.009 es_ES
dc.description.references Miao, Q., Huang, L., & Chen, L. (2012). Advances in the Control of Dissolved and Colloidal Substances Present in Papermaking Processes: A Brief Review. BioResources, 8(1). doi:10.15376/biores.8.1.1431-1455 es_ES
dc.description.references Wang, Z., Wu, Z., Yin, X., & Tian, L. (2008). Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science, 325(1), 238-244. doi:10.1016/j.memsci.2008.07.035 es_ES
dc.description.references Zhu, X., Wang, Z., & Wu, Z. (2011). Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 46(4), 1001-1009. doi:10.1016/j.procbio.2011.01.020 es_ES
dc.description.references Crozes, G., Anselme, C., & Mallevialle, J. (1993). Effect of adsorption of organic matter on fouling of ultrafiltration membranes. Journal of Membrane Science, 84(1-2), 61-77. doi:10.1016/0376-7388(93)85051-w es_ES
dc.description.references Liu, Y., Li, X., Yang, Y., Ye, W., Ji, S., Ren, J., & Zhou, Z. (2014). Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water. Desalination, 347, 191-198. doi:10.1016/j.desal.2014.05.039 es_ES
dc.description.references Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi:10.1016/s0376-7388(00)00316-1 es_ES
dc.description.references Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147(1-3), 251-255. doi:10.1016/s0011-9164(02)00545-3 es_ES
dc.description.references Jarusutthirak, C., Amy, G., & Croué, J.-P. (2002). Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination, 145(1-3), 247-255. doi:10.1016/s0011-9164(02)00419-8 es_ES
dc.description.references Goh, Y. T., Harris, J. L., & Roddick, F. A. (2011). Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent. Water Science and Technology, 63(12), 2853-2859. doi:10.2166/wst.2011.450 es_ES
dc.description.references Maruyama, T. (2001). FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. Journal of Membrane Science, 192(1-2), 201-207. doi:10.1016/s0376-7388(01)00502-6 es_ES
dc.description.references Her, N., Amy, G., Park, H.-R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427-1438. doi:10.1016/j.watres.2003.12.008 es_ES
dc.description.references Kimura, K., Yamato, N., Yamamura, H., & Watanabe, Y. (2005). Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBRs) Treating Municipal Wastewater. Environmental Science & Technology, 39(16), 6293-6299. doi:10.1021/es0502425 es_ES
dc.description.references Carlsson, D. ., Dal-Cin, M. ., Black, P., & Lick, C. . (1998). A surface spectroscopic study of membranes fouled by pulp mill effluent1Issued as NRC #41964.1. Journal of Membrane Science, 142(1), 1-11. doi:10.1016/s0376-7388(97)00305-0 es_ES
dc.description.references Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715-1725. doi:10.2166/wst.2017.351 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem