Mostrar el registro sencillo del ítem
dc.contributor.author | Sousa, Mayko Rannany S. | es_ES |
dc.contributor.author | Lora-García, Jaime | es_ES |
dc.contributor.author | López Pérez, Maria Fernanda | es_ES |
dc.contributor.author | Heran, Marc | es_ES |
dc.date.accessioned | 2021-05-25T03:32:12Z | |
dc.date.available | 2021-05-25T03:32:12Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166738 | |
dc.description.abstract | [EN] In this study, membrane fouling caused by paperboard mill treated effluent (PMTE) was investigated based on a dead-end ultrafiltration (UF) pilot-scale study. The membranes employed were commercial hydrophobic UF membranes made of polyethersulfone (PES) with a molecular weight cut-off of 10 kDa, 50 kDa, and 100 kDa. Membrane fouling mechanism during dead-end filtration, chemical analysis, field emission scanning electron microscopy (FESEM), energy-dispersive spectrophotometry (EDS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and 3D fluorescence excitation emission matrix (3DEEM) analysis were applied to understand which fraction of the dissolved and colloidal substances (DCS) caused the membrane fouling. The results indicated that the phenomenon controlling fouling mechanism tended to be cake layer formation (R-2 >= 0.98) for all membranes tested. The 3DEEM results indicate that the majority of the organic foulants with fluorescence characteristics on the membrane were colloidal proteins (protein-like substances I+II) and macromolecular proteins (soluble microbial products, SMP-like substances). In addition, polysaccharide (cellulosic species), fatty and resin acid substances were identified on the fouled membrane by the ATR-FTIR analysis and play an important role in membrane fouling. In addition, the FESEM and EDS analyses indicate that the presence of inorganic foulants on the membrane surfaces, such as metal ions and especially Ca2+, can accelerate membrane fouling, whereas Mg and Si are linked to reversible fouling. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ultrafiltration | es_ES |
dc.subject | Paper mill effluent | es_ES |
dc.subject | Membrane fouling | es_ES |
dc.subject | Foulants identification | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w12020365 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Sousa, MRS.; Lora-García, J.; López Pérez, MF.; Heran, M. (2020). Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent. Water. 12(2):1-27. https://doi.org/10.3390/w12020365 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w12020365 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 27 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\402423 | es_ES |
dc.description.references | Key Statistics Report 2017|CEPI—CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017 | es_ES |
dc.description.references | Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968 | es_ES |
dc.description.references | Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64. doi:10.1016/j.jece.2013.03.007 | es_ES |
dc.description.references | Ordóñez, R., Hermosilla, D., San Pío, I., & Blanco, A. (2010). Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill. Water Science and Technology, 62(7), 1694-1703. doi:10.2166/wst.2010.933 | es_ES |
dc.description.references | Rudolph, G., Schagerlöf, H., Morkeberg Krogh, K., Jönsson, A.-S., & Lipnizki, F. (2018). Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes, 8(4), 91. doi:10.3390/membranes8040091 | es_ES |
dc.description.references | Bayr, S., & Rintala, J. (2012). Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Research, 46(15), 4713-4720. doi:10.1016/j.watres.2012.06.033 | es_ES |
dc.description.references | Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391 | es_ES |
dc.description.references | Puro, L., Kallioinen, M., Mänttäri, M., Natarajan, G., C. Cameron, D., & Nyström, M. (2010). Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination, 264(3), 249-255. doi:10.1016/j.desal.2010.06.034 | es_ES |
dc.description.references | Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254 | es_ES |
dc.description.references | Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055 | es_ES |
dc.description.references | Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017 | es_ES |
dc.description.references | Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2 | es_ES |
dc.description.references | Winter, J., Barbeau, B., & Bérubé, P. (2017). Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance. Membranes, 7(3), 34. doi:10.3390/membranes7030034 | es_ES |
dc.description.references | Kossar, M. J., Amaral, K. J., Martinelli, S. S., & Erbe, M. C. L. (2013). Proposal for water reuse in the Kraft pulp and paper industry. Water Practice and Technology, 8(3-4), 359-374. doi:10.2166/wpt.2013.036 | es_ES |
dc.description.references | Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018 | es_ES |
dc.description.references | Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y., & Pelton, R. (2012). DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 7(4). doi:10.15376/biores.7.4.6109-6193 | es_ES |
dc.description.references | Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1 | es_ES |
dc.description.references | Wang, Z., Wu, Z., & Tang, S. (2009). Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6), 1533-1540. doi:10.1016/j.watres.2008.12.033 | es_ES |
dc.description.references | Tian, J., Yu, H., Shen, Y., Shi, W., Liu, D., Gao, S., & Cui, F. (2015). Identification of irreversible UF membrane foulants by fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination and Water Treatment, 57(46), 21794-21805. doi:10.1080/19443994.2015.1127783 | es_ES |
dc.description.references | Jacquin, C., Teychene, B., Lemee, L., Lesage, G., & Heran, M. (2018). Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment. Biochemical Engineering Journal, 132, 169-181. doi:10.1016/j.bej.2017.12.016 | es_ES |
dc.description.references | Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi:10.1021/es034354c | es_ES |
dc.description.references | Peiris, R. H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P. M., & Legge, R. L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. doi:10.1016/j.watres.2009.09.036 | es_ES |
dc.description.references | Peldszus, S., Hallé, C., Peiris, R. H., Hamouda, M., Jin, X., Legge, R. L., … Huck, P. M. (2011). Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Research, 45(16), 5161-5170. doi:10.1016/j.watres.2011.07.022 | es_ES |
dc.description.references | Yu, H., Qu, F., Liang, H., Han, Z., Ma, J., Shao, S., … Li, G. (2014). Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination, 337, 67-75. doi:10.1016/j.desal.2014.01.014 | es_ES |
dc.description.references | Liu, Y., Bo, S., Zhu, Y., & Zhang, W. (2003). Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 44(23), 7209-7220. doi:10.1016/j.polymer.2003.08.037 | es_ES |
dc.description.references | Howe, K. J., Marwah, A., Chiu, K.-P., & Adham, S. S. (2006). Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 40(24), 7908-7913. doi:10.1021/es0616480 | es_ES |
dc.description.references | Chang, I.-S., & Kim, S.-N. (2005). Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3-4), 1307-1314. doi:10.1016/j.procbio.2004.06.019 | es_ES |
dc.description.references | Teychene, B., Collet, G., & Gallard, H. (2016). Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane. Journal of Membrane Science, 505, 185-193. doi:10.1016/j.memsci.2016.01.039 | es_ES |
dc.description.references | Bowen, W. R., Calvo, J. I., & Hernández, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153-165. doi:10.1016/0376-7388(94)00295-a | es_ES |
dc.description.references | Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028 | es_ES |
dc.description.references | Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). The decrease of UV absorbance as an indicator of TOX formation. Water Research, 31(4), 946-949. doi:10.1016/s0043-1354(96)00393-4 | es_ES |
dc.description.references | Archer, A. D., & Singer, P. C. (2006). An evaluation of the relationship between SUVA and NOM coagulation using the ICR database. Journal - American Water Works Association, 98(7), 110-123. doi:10.1002/j.1551-8833.2006.tb07715.x | es_ES |
dc.description.references | Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced Coagulation: US Requirements and a Broader View. Water Science and Technology, 40(9), 63-70. doi:10.2166/wst.1999.0444 | es_ES |
dc.description.references | Martínez, C., Gómez, V., Pocurull, E., & Borrull, F. (2014). Characterization of organic fouling in reverse osmosis membranes by headspace solid phase microextraction and gas chromatography–mass spectrometry. Water Science and Technology, 71(1), 117-125. doi:10.2166/wst.2014.475 | es_ES |
dc.description.references | Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032 | es_ES |
dc.description.references | Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95, 205-219. doi:10.1016/j.watres.2016.03.021 | es_ES |
dc.description.references | Shao, S., Liang, H., Qu, F., Yu, H., Li, K., & Li, G. (2014). Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. Journal of Membrane Science, 464, 33-42. doi:10.1016/j.memsci.2014.03.071 | es_ES |
dc.description.references | Goletz, C., Wagner, M., Grübel, A., Schmidt, W., Korf, N., & Werner, P. (2011). Standardization of fluorescence excitation–emission-matrices in aquatic milieu. Talanta, 85(1), 650-656. doi:10.1016/j.talanta.2011.04.045 | es_ES |
dc.description.references | Park, M., & Snyder, S. A. (2018). Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere, 193, 530-537. doi:10.1016/j.chemosphere.2017.11.069 | es_ES |
dc.description.references | Jacquin, C., Lesage, G., Traber, J., Pronk, W., & Heran, M. (2017). Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Research, 118, 82-92. doi:10.1016/j.watres.2017.04.009 | es_ES |
dc.description.references | Miao, Q., Huang, L., & Chen, L. (2012). Advances in the Control of Dissolved and Colloidal Substances Present in Papermaking Processes: A Brief Review. BioResources, 8(1). doi:10.15376/biores.8.1.1431-1455 | es_ES |
dc.description.references | Wang, Z., Wu, Z., Yin, X., & Tian, L. (2008). Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science, 325(1), 238-244. doi:10.1016/j.memsci.2008.07.035 | es_ES |
dc.description.references | Zhu, X., Wang, Z., & Wu, Z. (2011). Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 46(4), 1001-1009. doi:10.1016/j.procbio.2011.01.020 | es_ES |
dc.description.references | Crozes, G., Anselme, C., & Mallevialle, J. (1993). Effect of adsorption of organic matter on fouling of ultrafiltration membranes. Journal of Membrane Science, 84(1-2), 61-77. doi:10.1016/0376-7388(93)85051-w | es_ES |
dc.description.references | Liu, Y., Li, X., Yang, Y., Ye, W., Ji, S., Ren, J., & Zhou, Z. (2014). Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water. Desalination, 347, 191-198. doi:10.1016/j.desal.2014.05.039 | es_ES |
dc.description.references | Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi:10.1016/s0376-7388(00)00316-1 | es_ES |
dc.description.references | Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147(1-3), 251-255. doi:10.1016/s0011-9164(02)00545-3 | es_ES |
dc.description.references | Jarusutthirak, C., Amy, G., & Croué, J.-P. (2002). Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination, 145(1-3), 247-255. doi:10.1016/s0011-9164(02)00419-8 | es_ES |
dc.description.references | Goh, Y. T., Harris, J. L., & Roddick, F. A. (2011). Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent. Water Science and Technology, 63(12), 2853-2859. doi:10.2166/wst.2011.450 | es_ES |
dc.description.references | Maruyama, T. (2001). FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. Journal of Membrane Science, 192(1-2), 201-207. doi:10.1016/s0376-7388(01)00502-6 | es_ES |
dc.description.references | Her, N., Amy, G., Park, H.-R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427-1438. doi:10.1016/j.watres.2003.12.008 | es_ES |
dc.description.references | Kimura, K., Yamato, N., Yamamura, H., & Watanabe, Y. (2005). Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBRs) Treating Municipal Wastewater. Environmental Science & Technology, 39(16), 6293-6299. doi:10.1021/es0502425 | es_ES |
dc.description.references | Carlsson, D. ., Dal-Cin, M. ., Black, P., & Lick, C. . (1998). A surface spectroscopic study of membranes fouled by pulp mill effluent1Issued as NRC #41964.1. Journal of Membrane Science, 142(1), 1-11. doi:10.1016/s0376-7388(97)00305-0 | es_ES |
dc.description.references | Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715-1725. doi:10.2166/wst.2017.351 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |