- -

Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent

Mostrar el registro completo del ítem

Sousa, MRS.; Lora-García, J.; López Pérez, MF.; Heran, M. (2020). Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent. Water. 12(2):1-27. https://doi.org/10.3390/w12020365

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166738

Ficheros en el ítem

Metadatos del ítem

Título: Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent
Autor: Sousa, Mayko Rannany S. Lora-García, Jaime López Pérez, Maria Fernanda Heran, Marc
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] In this study, membrane fouling caused by paperboard mill treated effluent (PMTE) was investigated based on a dead-end ultrafiltration (UF) pilot-scale study. The membranes employed were commercial hydrophobic UF ...[+]
Palabras clave: Ultrafiltration , Paper mill effluent , Membrane fouling , Foulants identification
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12020365
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12020365
Tipo: Artículo

References

Key Statistics Report 2017|CEPI—CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017

Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968

Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64. doi:10.1016/j.jece.2013.03.007 [+]
Key Statistics Report 2017|CEPI—CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017

Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968

Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64. doi:10.1016/j.jece.2013.03.007

Ordóñez, R., Hermosilla, D., San Pío, I., & Blanco, A. (2010). Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill. Water Science and Technology, 62(7), 1694-1703. doi:10.2166/wst.2010.933

Rudolph, G., Schagerlöf, H., Morkeberg Krogh, K., Jönsson, A.-S., & Lipnizki, F. (2018). Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes, 8(4), 91. doi:10.3390/membranes8040091

Bayr, S., & Rintala, J. (2012). Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Research, 46(15), 4713-4720. doi:10.1016/j.watres.2012.06.033

Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391

Puro, L., Kallioinen, M., Mänttäri, M., Natarajan, G., C. Cameron, D., & Nyström, M. (2010). Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination, 264(3), 249-255. doi:10.1016/j.desal.2010.06.034

Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254

Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055

Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017

Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2

Winter, J., Barbeau, B., & Bérubé, P. (2017). Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance. Membranes, 7(3), 34. doi:10.3390/membranes7030034

Kossar, M. J., Amaral, K. J., Martinelli, S. S., & Erbe, M. C. L. (2013). Proposal for water reuse in the Kraft pulp and paper industry. Water Practice and Technology, 8(3-4), 359-374. doi:10.2166/wpt.2013.036

Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018

Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y., & Pelton, R. (2012). DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 7(4). doi:10.15376/biores.7.4.6109-6193

Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1

Wang, Z., Wu, Z., & Tang, S. (2009). Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6), 1533-1540. doi:10.1016/j.watres.2008.12.033

Tian, J., Yu, H., Shen, Y., Shi, W., Liu, D., Gao, S., & Cui, F. (2015). Identification of irreversible UF membrane foulants by fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination and Water Treatment, 57(46), 21794-21805. doi:10.1080/19443994.2015.1127783

Jacquin, C., Teychene, B., Lemee, L., Lesage, G., & Heran, M. (2018). Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment. Biochemical Engineering Journal, 132, 169-181. doi:10.1016/j.bej.2017.12.016

Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi:10.1021/es034354c

Peiris, R. H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P. M., & Legge, R. L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. doi:10.1016/j.watres.2009.09.036

Peldszus, S., Hallé, C., Peiris, R. H., Hamouda, M., Jin, X., Legge, R. L., … Huck, P. M. (2011). Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Research, 45(16), 5161-5170. doi:10.1016/j.watres.2011.07.022

Yu, H., Qu, F., Liang, H., Han, Z., Ma, J., Shao, S., … Li, G. (2014). Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination, 337, 67-75. doi:10.1016/j.desal.2014.01.014

Liu, Y., Bo, S., Zhu, Y., & Zhang, W. (2003). Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 44(23), 7209-7220. doi:10.1016/j.polymer.2003.08.037

Howe, K. J., Marwah, A., Chiu, K.-P., & Adham, S. S. (2006). Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 40(24), 7908-7913. doi:10.1021/es0616480

Chang, I.-S., & Kim, S.-N. (2005). Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3-4), 1307-1314. doi:10.1016/j.procbio.2004.06.019

Teychene, B., Collet, G., & Gallard, H. (2016). Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane. Journal of Membrane Science, 505, 185-193. doi:10.1016/j.memsci.2016.01.039

Bowen, W. R., Calvo, J. I., & Hernández, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153-165. doi:10.1016/0376-7388(94)00295-a

Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028

Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). The decrease of UV absorbance as an indicator of TOX formation. Water Research, 31(4), 946-949. doi:10.1016/s0043-1354(96)00393-4

Archer, A. D., & Singer, P. C. (2006). An evaluation of the relationship between SUVA and NOM coagulation using the ICR database. Journal - American Water Works Association, 98(7), 110-123. doi:10.1002/j.1551-8833.2006.tb07715.x

Edzwald, J. K., & Tobiason, J. E. (1999). Enhanced Coagulation: US Requirements and a Broader View. Water Science and Technology, 40(9), 63-70. doi:10.2166/wst.1999.0444

Martínez, C., Gómez, V., Pocurull, E., & Borrull, F. (2014). Characterization of organic fouling in reverse osmosis membranes by headspace solid phase microextraction and gas chromatography–mass spectrometry. Water Science and Technology, 71(1), 117-125. doi:10.2166/wst.2014.475

Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032

Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95, 205-219. doi:10.1016/j.watres.2016.03.021

Shao, S., Liang, H., Qu, F., Yu, H., Li, K., & Li, G. (2014). Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. Journal of Membrane Science, 464, 33-42. doi:10.1016/j.memsci.2014.03.071

Goletz, C., Wagner, M., Grübel, A., Schmidt, W., Korf, N., & Werner, P. (2011). Standardization of fluorescence excitation–emission-matrices in aquatic milieu. Talanta, 85(1), 650-656. doi:10.1016/j.talanta.2011.04.045

Park, M., & Snyder, S. A. (2018). Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere, 193, 530-537. doi:10.1016/j.chemosphere.2017.11.069

Jacquin, C., Lesage, G., Traber, J., Pronk, W., & Heran, M. (2017). Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Research, 118, 82-92. doi:10.1016/j.watres.2017.04.009

Miao, Q., Huang, L., & Chen, L. (2012). Advances in the Control of Dissolved and Colloidal Substances Present in Papermaking Processes: A Brief Review. BioResources, 8(1). doi:10.15376/biores.8.1.1431-1455

Wang, Z., Wu, Z., Yin, X., & Tian, L. (2008). Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science, 325(1), 238-244. doi:10.1016/j.memsci.2008.07.035

Zhu, X., Wang, Z., & Wu, Z. (2011). Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 46(4), 1001-1009. doi:10.1016/j.procbio.2011.01.020

Crozes, G., Anselme, C., & Mallevialle, J. (1993). Effect of adsorption of organic matter on fouling of ultrafiltration membranes. Journal of Membrane Science, 84(1-2), 61-77. doi:10.1016/0376-7388(93)85051-w

Liu, Y., Li, X., Yang, Y., Ye, W., Ji, S., Ren, J., & Zhou, Z. (2014). Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water. Desalination, 347, 191-198. doi:10.1016/j.desal.2014.05.039

Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi:10.1016/s0376-7388(00)00316-1

Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147(1-3), 251-255. doi:10.1016/s0011-9164(02)00545-3

Jarusutthirak, C., Amy, G., & Croué, J.-P. (2002). Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination, 145(1-3), 247-255. doi:10.1016/s0011-9164(02)00419-8

Goh, Y. T., Harris, J. L., & Roddick, F. A. (2011). Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent. Water Science and Technology, 63(12), 2853-2859. doi:10.2166/wst.2011.450

Maruyama, T. (2001). FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. Journal of Membrane Science, 192(1-2), 201-207. doi:10.1016/s0376-7388(01)00502-6

Her, N., Amy, G., Park, H.-R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427-1438. doi:10.1016/j.watres.2003.12.008

Kimura, K., Yamato, N., Yamamura, H., & Watanabe, Y. (2005). Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBRs) Treating Municipal Wastewater. Environmental Science & Technology, 39(16), 6293-6299. doi:10.1021/es0502425

Carlsson, D. ., Dal-Cin, M. ., Black, P., & Lick, C. . (1998). A surface spectroscopic study of membranes fouled by pulp mill effluent1Issued as NRC #41964.1. Journal of Membrane Science, 142(1), 1-11. doi:10.1016/s0376-7388(97)00305-0

Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715-1725. doi:10.2166/wst.2017.351

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem