- -

Wool waste used as sustainable nonwoven for building applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wool waste used as sustainable nonwoven for building applications

Mostrar el registro completo del ítem

Rubino, C.; Bonet-Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. (2021). Wool waste used as sustainable nonwoven for building applications. Journal of Cleaner Production. 278:1-15. https://doi.org/10.1016/j.jclepro.2020.123905

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166739

Ficheros en el ítem

Metadatos del ítem

Título: Wool waste used as sustainable nonwoven for building applications
Autor: RUBINO, C. BONET-ARACIL, MARILÉS LIUZZI, S. Stefanizzi, P. Martellotta, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] Reusing textile waste in building applications has the potential to reduce the environmental impact of two sectors considered the main sources of environmental pollution: the textile and the construction industries. ...[+]
Palabras clave: Textile waste recycling , Bicomponent fibers as binder , Thermal insulator , Acoustic absorber
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Cleaner Production. (issn: 0959-6526 )
DOI: 10.1016/j.jclepro.2020.123905
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jclepro.2020.123905
Código del Proyecto:
info:eu-repo/grantAgreement/MIUR//20174RTL7W_007/
Agradecimientos:
Authors acknowledge the staff at Electron Microscopy Service of the Universitat Politècnica de València for their support on the analysis of the samples. Authors wish to address a special thanks to the Company Gordon ...[+]
Tipo: Artículo

References

Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824

Andrade, J. M., & Estévez-Pérez, M. G. (2014). Statistical comparison of the slopes of two regression lines: A tutorial. Analytica Chimica Acta, 838, 1-12. doi:10.1016/j.aca.2014.04.057

Bakatovich, A., & Gaspar, F. (2019). Composite material for thermal insulation based on moss raw material. Construction and Building Materials, 228, 116699. doi:10.1016/j.conbuildmat.2019.116699 [+]
Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824

Andrade, J. M., & Estévez-Pérez, M. G. (2014). Statistical comparison of the slopes of two regression lines: A tutorial. Analytica Chimica Acta, 838, 1-12. doi:10.1016/j.aca.2014.04.057

Bakatovich, A., & Gaspar, F. (2019). Composite material for thermal insulation based on moss raw material. Construction and Building Materials, 228, 116699. doi:10.1016/j.conbuildmat.2019.116699

Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083. doi:10.1016/j.ijbiomac.2019.10.113

Bilal, M., Khan, K. I. A., Thaheem, M. J., & Nasir, A. R. (2020). Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 276, 123250. doi:10.1016/j.jclepro.2020.123250

Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123

Cetiner, I., & Shea, A. D. (2018). Wood waste as an alternative thermal insulation for buildings. Energy and Buildings, 168, 374-384. doi:10.1016/j.enbuild.2018.03.019

Collet, F., Achchaq, F., Djellab, K., Marmoret, L., & Beji, H. (2011). Water vapor properties of two hemp wools manufactured with different treatments. Construction and Building Materials, 25(2), 1079-1085. doi:10.1016/j.conbuildmat.2010.06.069

Danihelová, A., Němec, M., Gergeľ, T., Gejdoš, M., Gordanová, J., & Sčensný, P. (2019). Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber. Sustainability, 11(10), 2968. doi:10.3390/su11102968

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

Drochytka, R., Dvorakova, M., & Hodna, J. (2017). Performance Evaluation and Research of Alternative Thermal Insulation Based on Waste Polyester Fibers. Procedia Engineering, 195, 236-243. doi:10.1016/j.proeng.2017.04.549

Elinwa, A. U., Abdulbasir, G., & Abdulkadir, G. (2018). Gum Arabic as an admixture for cement concrete production. Construction and Building Materials, 176, 201-212. doi:10.1016/j.conbuildmat.2018.04.160

Forouharshad, M., Montazer, M., Moghadam, M. B., & Saligheh, O. (2011). Preparation of flame retardant wool using zirconium acetate optimized by CCD. Thermochimica Acta, 520(1-2), 134-138. doi:10.1016/j.tca.2011.03.029

Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H. (2014). A novel effective medium theory for modelling the thermal conductivity of porous materials. International Journal of Heat and Mass Transfer, 68, 295-298. doi:10.1016/j.ijheatmasstransfer.2013.09.043

Hittini, W., Mourad, A.-H. I., & Abu-Jdayil, B. (2019). Cleaner production of thermal insulation boards utilizing buffing dust waste. Journal of Cleaner Production, 236, 117603. doi:10.1016/j.jclepro.2019.117603

Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9

Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727

Korjenic, A., Zach, J., & Hroudová, J. (2016). The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy and Buildings, 116, 45-58. doi:10.1016/j.enbuild.2015.12.037

Khan, A., Mohamed, M., Al Halo, N., & Benkreira, H. (2017). Acoustical properties of novel sound absorbers made from recycled granulates. Applied Acoustics, 127, 80-88. doi:10.1016/j.apacoust.2017.05.035

Koponen, A., Kataja, M., & Timonen, J. (1997). Permeability and effective porosity of porous media. Physical Review E, 56(3), 3319-3325. doi:10.1103/physreve.56.3319

Kremensas, A., Stapulionienė, R., Vaitkus, S., & Kairytė, A. (2017). Investigations on Physical-mechanical Properties of Effective Thermal Insulation Materials from Fibrous Hemp. Procedia Engineering, 172, 586-594. doi:10.1016/j.proeng.2017.02.069

Leal Filho, W., Ellams, D., Han, S., Tyler, D., Boiten, V. J., Paço, A., … Balogun, A.-L. (2019). A review of the socio-economic advantages of textile recycling. Journal of Cleaner Production, 218, 10-20. doi:10.1016/j.jclepro.2019.01.210

Li, W. D., & Ding, E. Y. (2007). Preparation and characterization of poly(ethylene terephthalate) fabrics treated by blends of cellulose nanocrystals and polyethylene glycol. Journal of Applied Polymer Science, 105(2), 373-378. doi:10.1002/app.26098

Liuzzi, S., Rubino, C., Martellotta, F., Stefanizzi, P., Casavola, C., & Pappalettera, G. (2020). Characterization of biomass-based materials for building applications: The case of straw and olive tree waste. Industrial Crops and Products, 147, 112229. doi:10.1016/j.indcrop.2020.112229

Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022

Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021

Matyka, M., Khalili, A., & Koza, Z. (2008). Tortuosity-porosity relation in porous media flow. Physical Review E, 78(2). doi:10.1103/physreve.78.026306

Munaro, M. R., Tavares, S. F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. doi:10.1016/j.jclepro.2020.121134

Muthu, S. S., Li, Y., Hu, J.-Y., & Mok, P.-Y. (2012). Recyclability Potential Index (RPI): The concept and quantification of RPI for textile fibres. Ecological Indicators, 18, 58-62. doi:10.1016/j.ecolind.2011.10.003

Muthu, S. S., Li, Y., Hu, J. Y., & Ze, L. (2012). Carbon footprint reduction in the textile process chain: Recycling of textile materials. Fibers and Polymers, 13(8), 1065-1070. doi:10.1007/s12221-012-1065-0

Muthukumar, N., Thilagavathi, G., Neelakrishnan, S., & Poovaragan, P. T. (2017). Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers, 16(2), 245-252. doi:10.1080/15440478.2017.1414654

Nakanishi, E. Y., Cabral, M. R., Gonçalves, P. de S., Santos, V. dos, & Savastano Junior, H. (2018). Formaldehyde-free particleboards using natural latex as the polymeric binder. Journal of Cleaner Production, 195, 1259-1269. doi:10.1016/j.jclepro.2018.06.019

Pielesz, A., Freeman, H. ., Wesełucha-Birczyńska, A., Wysocki, M., & Włochowicz, A. (2003). Assessing secondary structure of a dyed wool fibre by means of FTIR and FTR spectroscopies. Journal of Molecular Structure, 651-653, 405-418. doi:10.1016/s0022-2860(03)00210-2

Pisani, L. (2011). Simple Expression for the Tortuosity of Porous Media. Transport in Porous Media, 88(2), 193-203. doi:10.1007/s11242-011-9734-9

Ramamoorthy, S. K., Persson, A., & Skrifvars, M. (2014). Reusing textile waste as reinforcements in composites. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40687

Rubino, C., Bonet-Aracil, M., Liuzzi, S., Martellotta, F., & Stefanizzi, P. (2019). Thermal Characterization of Innovative Sustainable Building Materials from Wool Textile Fibers Waste. TECNICA ITALIANA-Italian Journal of Engineering Science, 63(2-4), 277-283. doi:10.18280/ti-ijes.632-423

Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials, 12(23), 4020. doi:10.3390/ma12234020

Sandin, G., & Peters, G. M. (2018). Environmental impact of textile reuse and recycling – A review. Journal of Cleaner Production, 184, 353-365. doi:10.1016/j.jclepro.2018.02.266

Stefan de Carvalho, P., Nora M.,D., Cantorski da Rosa, L., Development of an acoustic absorbing material based on sunflower residue following the cleaner production techniques, J. Clean. Prod.. (in press). https://doi.org/10.1016/j.jclepro.2020.122478.

Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. doi:10.1016/j.jclepro.2020.120978

Wojciechowska, E., Rom, M., Włochowicz, A., Wysocki, M., & Wesełucha-Birczyńska, A. (2004). The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. Journal of Molecular Structure, 704(1-3), 315-321. doi:10.1016/j.molstruc.2004.03.044

Yousef, S., Tatariants, M., Tichonovas, M., Kliucininkas, L., Lukošiūtė, S.-I., & Yan, L. (2020). Sustainable green technology for recovery of cotton fibers and polyester from textile waste. Journal of Cleaner Production, 254, 120078. doi:10.1016/j.jclepro.2020.120078

Zargarkazemi, A., Sadeghi-Kiakhani, M., Arami, M., & Bahrami, S. H. (2014). Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. The Journal of The Textile Institute, 106(1), 80-89. doi:10.1080/00405000.2014.906097

Zhang, W., Yi, X., Sun, X., & Zhang, Y. (2008). Surface modification of non-woven poly (ethylene terephthalate) fibrous scaffold for improving cell attachment in animal cell culture. Journal of Chemical Technology & Biotechnology, 83(6), 904-911. doi:10.1002/jctb.1890

Zhang, Q., Khan, M. U., Lin, X., Yi, W., & Lei, H. (2020). Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. Journal of Cleaner Production, 262, 121251. doi:10.1016/j.jclepro.2020.121251

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem