Mostrar el registro sencillo del ítem
dc.contributor.author | RUBINO, C. | es_ES |
dc.contributor.author | BONET-ARACIL, MARILÉS | es_ES |
dc.contributor.author | LIUZZI, S. | es_ES |
dc.contributor.author | Stefanizzi, P. | es_ES |
dc.contributor.author | Martellotta, F. | es_ES |
dc.date.accessioned | 2021-05-25T03:32:15Z | |
dc.date.available | 2021-05-25T03:32:15Z | |
dc.date.issued | 2021-01-01 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166739 | |
dc.description.abstract | [EN] Reusing textile waste in building applications has the potential to reduce the environmental impact of two sectors considered the main sources of environmental pollution: the textile and the construction industries. Thus, the main goal of the present research study is to assess the potential conversion of wool waste into new raw materials suitable for building components. Hence, hygrothermal, acoustic and nonacoustic properties of nonwovens consisting of 100% wool waste fibers thermally bonded with polyester/copolyester bi-component fibers were explored. Five different density values (51, 90, 115, 136 and 167 kg/m(3)) were examined. Absorption coefficients ranging from 0.7 to almost 1 were measured above 1 kHz using 50 mm thick samples; thermal conductivity values from 0.044 to 0.057 W/(m.K) were obtained and a water vapour permeability close to 2.10(-11) kg/(m.s.Pa) was found. Furthermore, a comparison between nonwovens under test and other previously experimented materials was carried out. Measurement results showed that the manufacturing processes mainly affected the sound absorption coefficients and the hygric properties of the fibrous nonwovens. Comparison between tested materials and those currently available on the market allows to state that the tested nonwovens may represent a valid alternative for building applications, thus opening a new research area. (C) 2020 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | Authors acknowledge the staff at Electron Microscopy Service of the Universitat Politècnica de València for their support on the analysis of the samples. Authors wish to address a special thanks to the Company Gordon Confezioni srl (Cassano, Italy) for supplying the raw materials and for the contribution given to this research. Authors thank the financial support of the Italian PRIN ("Progetto di Ricerca di Rilevante Interesse Nazionale) Project "SUSTAIN/ABLE e SimultaneoUs STructural And energetIc reNovAtion of BuiLdings through innovativE solutions", ERC Sector PE8, ID 20174RTL7W_007. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Textile waste recycling | es_ES |
dc.subject | Bicomponent fibers as binder | es_ES |
dc.subject | Thermal insulator | es_ES |
dc.subject | Acoustic absorber | es_ES |
dc.subject.classification | INGENIERIA TEXTIL Y PAPELERA | es_ES |
dc.title | Wool waste used as sustainable nonwoven for building applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2020.123905 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIUR//20174RTL7W_007/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Rubino, C.; Bonet-Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. (2021). Wool waste used as sustainable nonwoven for building applications. Journal of Cleaner Production. 278:1-15. https://doi.org/10.1016/j.jclepro.2020.123905 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2020.123905 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 278 | es_ES |
dc.relation.pasarela | S\417372 | es_ES |
dc.contributor.funder | Ministero dell'Istruzione dell'Università e della Ricerca, Italia | es_ES |
dc.description.references | Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 | es_ES |
dc.description.references | Andrade, J. M., & Estévez-Pérez, M. G. (2014). Statistical comparison of the slopes of two regression lines: A tutorial. Analytica Chimica Acta, 838, 1-12. doi:10.1016/j.aca.2014.04.057 | es_ES |
dc.description.references | Bakatovich, A., & Gaspar, F. (2019). Composite material for thermal insulation based on moss raw material. Construction and Building Materials, 228, 116699. doi:10.1016/j.conbuildmat.2019.116699 | es_ES |
dc.description.references | Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083. doi:10.1016/j.ijbiomac.2019.10.113 | es_ES |
dc.description.references | Bilal, M., Khan, K. I. A., Thaheem, M. J., & Nasir, A. R. (2020). Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 276, 123250. doi:10.1016/j.jclepro.2020.123250 | es_ES |
dc.description.references | Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123 | es_ES |
dc.description.references | Cetiner, I., & Shea, A. D. (2018). Wood waste as an alternative thermal insulation for buildings. Energy and Buildings, 168, 374-384. doi:10.1016/j.enbuild.2018.03.019 | es_ES |
dc.description.references | Collet, F., Achchaq, F., Djellab, K., Marmoret, L., & Beji, H. (2011). Water vapor properties of two hemp wools manufactured with different treatments. Construction and Building Materials, 25(2), 1079-1085. doi:10.1016/j.conbuildmat.2010.06.069 | es_ES |
dc.description.references | Danihelová, A., Němec, M., Gergeľ, T., Gejdoš, M., Gordanová, J., & Sčensný, P. (2019). Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber. Sustainability, 11(10), 2968. doi:10.3390/su11102968 | es_ES |
dc.description.references | Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 | es_ES |
dc.description.references | Drochytka, R., Dvorakova, M., & Hodna, J. (2017). Performance Evaluation and Research of Alternative Thermal Insulation Based on Waste Polyester Fibers. Procedia Engineering, 195, 236-243. doi:10.1016/j.proeng.2017.04.549 | es_ES |
dc.description.references | Elinwa, A. U., Abdulbasir, G., & Abdulkadir, G. (2018). Gum Arabic as an admixture for cement concrete production. Construction and Building Materials, 176, 201-212. doi:10.1016/j.conbuildmat.2018.04.160 | es_ES |
dc.description.references | Forouharshad, M., Montazer, M., Moghadam, M. B., & Saligheh, O. (2011). Preparation of flame retardant wool using zirconium acetate optimized by CCD. Thermochimica Acta, 520(1-2), 134-138. doi:10.1016/j.tca.2011.03.029 | es_ES |
dc.description.references | Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H. (2014). A novel effective medium theory for modelling the thermal conductivity of porous materials. International Journal of Heat and Mass Transfer, 68, 295-298. doi:10.1016/j.ijheatmasstransfer.2013.09.043 | es_ES |
dc.description.references | Hittini, W., Mourad, A.-H. I., & Abu-Jdayil, B. (2019). Cleaner production of thermal insulation boards utilizing buffing dust waste. Journal of Cleaner Production, 236, 117603. doi:10.1016/j.jclepro.2019.117603 | es_ES |
dc.description.references | Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 | es_ES |
dc.description.references | Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727 | es_ES |
dc.description.references | Korjenic, A., Zach, J., & Hroudová, J. (2016). The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy and Buildings, 116, 45-58. doi:10.1016/j.enbuild.2015.12.037 | es_ES |
dc.description.references | Khan, A., Mohamed, M., Al Halo, N., & Benkreira, H. (2017). Acoustical properties of novel sound absorbers made from recycled granulates. Applied Acoustics, 127, 80-88. doi:10.1016/j.apacoust.2017.05.035 | es_ES |
dc.description.references | Koponen, A., Kataja, M., & Timonen, J. (1997). Permeability and effective porosity of porous media. Physical Review E, 56(3), 3319-3325. doi:10.1103/physreve.56.3319 | es_ES |
dc.description.references | Kremensas, A., Stapulionienė, R., Vaitkus, S., & Kairytė, A. (2017). Investigations on Physical-mechanical Properties of Effective Thermal Insulation Materials from Fibrous Hemp. Procedia Engineering, 172, 586-594. doi:10.1016/j.proeng.2017.02.069 | es_ES |
dc.description.references | Leal Filho, W., Ellams, D., Han, S., Tyler, D., Boiten, V. J., Paço, A., … Balogun, A.-L. (2019). A review of the socio-economic advantages of textile recycling. Journal of Cleaner Production, 218, 10-20. doi:10.1016/j.jclepro.2019.01.210 | es_ES |
dc.description.references | Li, W. D., & Ding, E. Y. (2007). Preparation and characterization of poly(ethylene terephthalate) fabrics treated by blends of cellulose nanocrystals and polyethylene glycol. Journal of Applied Polymer Science, 105(2), 373-378. doi:10.1002/app.26098 | es_ES |
dc.description.references | Liuzzi, S., Rubino, C., Martellotta, F., Stefanizzi, P., Casavola, C., & Pappalettera, G. (2020). Characterization of biomass-based materials for building applications: The case of straw and olive tree waste. Industrial Crops and Products, 147, 112229. doi:10.1016/j.indcrop.2020.112229 | es_ES |
dc.description.references | Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022 | es_ES |
dc.description.references | Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021 | es_ES |
dc.description.references | Matyka, M., Khalili, A., & Koza, Z. (2008). Tortuosity-porosity relation in porous media flow. Physical Review E, 78(2). doi:10.1103/physreve.78.026306 | es_ES |
dc.description.references | Munaro, M. R., Tavares, S. F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. doi:10.1016/j.jclepro.2020.121134 | es_ES |
dc.description.references | Muthu, S. S., Li, Y., Hu, J.-Y., & Mok, P.-Y. (2012). Recyclability Potential Index (RPI): The concept and quantification of RPI for textile fibres. Ecological Indicators, 18, 58-62. doi:10.1016/j.ecolind.2011.10.003 | es_ES |
dc.description.references | Muthu, S. S., Li, Y., Hu, J. Y., & Ze, L. (2012). Carbon footprint reduction in the textile process chain: Recycling of textile materials. Fibers and Polymers, 13(8), 1065-1070. doi:10.1007/s12221-012-1065-0 | es_ES |
dc.description.references | Muthukumar, N., Thilagavathi, G., Neelakrishnan, S., & Poovaragan, P. T. (2017). Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers, 16(2), 245-252. doi:10.1080/15440478.2017.1414654 | es_ES |
dc.description.references | Nakanishi, E. Y., Cabral, M. R., Gonçalves, P. de S., Santos, V. dos, & Savastano Junior, H. (2018). Formaldehyde-free particleboards using natural latex as the polymeric binder. Journal of Cleaner Production, 195, 1259-1269. doi:10.1016/j.jclepro.2018.06.019 | es_ES |
dc.description.references | Pielesz, A., Freeman, H. ., Wesełucha-Birczyńska, A., Wysocki, M., & Włochowicz, A. (2003). Assessing secondary structure of a dyed wool fibre by means of FTIR and FTR spectroscopies. Journal of Molecular Structure, 651-653, 405-418. doi:10.1016/s0022-2860(03)00210-2 | es_ES |
dc.description.references | Pisani, L. (2011). Simple Expression for the Tortuosity of Porous Media. Transport in Porous Media, 88(2), 193-203. doi:10.1007/s11242-011-9734-9 | es_ES |
dc.description.references | Ramamoorthy, S. K., Persson, A., & Skrifvars, M. (2014). Reusing textile waste as reinforcements in composites. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40687 | es_ES |
dc.description.references | Rubino, C., Bonet-Aracil, M., Liuzzi, S., Martellotta, F., & Stefanizzi, P. (2019). Thermal Characterization of Innovative Sustainable Building Materials from Wool Textile Fibers Waste. TECNICA ITALIANA-Italian Journal of Engineering Science, 63(2-4), 277-283. doi:10.18280/ti-ijes.632-423 | es_ES |
dc.description.references | Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials, 12(23), 4020. doi:10.3390/ma12234020 | es_ES |
dc.description.references | Sandin, G., & Peters, G. M. (2018). Environmental impact of textile reuse and recycling – A review. Journal of Cleaner Production, 184, 353-365. doi:10.1016/j.jclepro.2018.02.266 | es_ES |
dc.description.references | Stefan de Carvalho, P., Nora M.,D., Cantorski da Rosa, L., Development of an acoustic absorbing material based on sunflower residue following the cleaner production techniques, J. Clean. Prod.. (in press). https://doi.org/10.1016/j.jclepro.2020.122478. | es_ES |
dc.description.references | Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. doi:10.1016/j.jclepro.2020.120978 | es_ES |
dc.description.references | Wojciechowska, E., Rom, M., Włochowicz, A., Wysocki, M., & Wesełucha-Birczyńska, A. (2004). The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. Journal of Molecular Structure, 704(1-3), 315-321. doi:10.1016/j.molstruc.2004.03.044 | es_ES |
dc.description.references | Yousef, S., Tatariants, M., Tichonovas, M., Kliucininkas, L., Lukošiūtė, S.-I., & Yan, L. (2020). Sustainable green technology for recovery of cotton fibers and polyester from textile waste. Journal of Cleaner Production, 254, 120078. doi:10.1016/j.jclepro.2020.120078 | es_ES |
dc.description.references | Zargarkazemi, A., Sadeghi-Kiakhani, M., Arami, M., & Bahrami, S. H. (2014). Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. The Journal of The Textile Institute, 106(1), 80-89. doi:10.1080/00405000.2014.906097 | es_ES |
dc.description.references | Zhang, W., Yi, X., Sun, X., & Zhang, Y. (2008). Surface modification of non-woven poly (ethylene terephthalate) fibrous scaffold for improving cell attachment in animal cell culture. Journal of Chemical Technology & Biotechnology, 83(6), 904-911. doi:10.1002/jctb.1890 | es_ES |
dc.description.references | Zhang, Q., Khan, M. U., Lin, X., Yi, W., & Lei, H. (2020). Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. Journal of Cleaner Production, 262, 121251. doi:10.1016/j.jclepro.2020.121251 | es_ES |