- -

Wool waste used as sustainable nonwoven for building applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wool waste used as sustainable nonwoven for building applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author RUBINO, C. es_ES
dc.contributor.author BONET-ARACIL, MARILÉS es_ES
dc.contributor.author LIUZZI, S. es_ES
dc.contributor.author Stefanizzi, P. es_ES
dc.contributor.author Martellotta, F. es_ES
dc.date.accessioned 2021-05-25T03:32:15Z
dc.date.available 2021-05-25T03:32:15Z
dc.date.issued 2021-01-01 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166739
dc.description.abstract [EN] Reusing textile waste in building applications has the potential to reduce the environmental impact of two sectors considered the main sources of environmental pollution: the textile and the construction industries. Thus, the main goal of the present research study is to assess the potential conversion of wool waste into new raw materials suitable for building components. Hence, hygrothermal, acoustic and nonacoustic properties of nonwovens consisting of 100% wool waste fibers thermally bonded with polyester/copolyester bi-component fibers were explored. Five different density values (51, 90, 115, 136 and 167 kg/m(3)) were examined. Absorption coefficients ranging from 0.7 to almost 1 were measured above 1 kHz using 50 mm thick samples; thermal conductivity values from 0.044 to 0.057 W/(m.K) were obtained and a water vapour permeability close to 2.10(-11) kg/(m.s.Pa) was found. Furthermore, a comparison between nonwovens under test and other previously experimented materials was carried out. Measurement results showed that the manufacturing processes mainly affected the sound absorption coefficients and the hygric properties of the fibrous nonwovens. Comparison between tested materials and those currently available on the market allows to state that the tested nonwovens may represent a valid alternative for building applications, thus opening a new research area. (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship Authors acknowledge the staff at Electron Microscopy Service of the Universitat Politècnica de València for their support on the analysis of the samples. Authors wish to address a special thanks to the Company Gordon Confezioni srl (Cassano, Italy) for supplying the raw materials and for the contribution given to this research. Authors thank the financial support of the Italian PRIN ("Progetto di Ricerca di Rilevante Interesse Nazionale) Project "SUSTAIN/ABLE e SimultaneoUs STructural And energetIc reNovAtion of BuiLdings through innovativE solutions", ERC Sector PE8, ID 20174RTL7W_007. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Textile waste recycling es_ES
dc.subject Bicomponent fibers as binder es_ES
dc.subject Thermal insulator es_ES
dc.subject Acoustic absorber es_ES
dc.subject.classification INGENIERIA TEXTIL Y PAPELERA es_ES
dc.title Wool waste used as sustainable nonwoven for building applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2020.123905 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIUR//20174RTL7W_007/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Rubino, C.; Bonet-Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. (2021). Wool waste used as sustainable nonwoven for building applications. Journal of Cleaner Production. 278:1-15. https://doi.org/10.1016/j.jclepro.2020.123905 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2020.123905 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.relation.pasarela S\417372 es_ES
dc.contributor.funder Ministero dell'Istruzione dell'Università e della Ricerca, Italia es_ES
dc.description.references Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 es_ES
dc.description.references Andrade, J. M., & Estévez-Pérez, M. G. (2014). Statistical comparison of the slopes of two regression lines: A tutorial. Analytica Chimica Acta, 838, 1-12. doi:10.1016/j.aca.2014.04.057 es_ES
dc.description.references Bakatovich, A., & Gaspar, F. (2019). Composite material for thermal insulation based on moss raw material. Construction and Building Materials, 228, 116699. doi:10.1016/j.conbuildmat.2019.116699 es_ES
dc.description.references Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial – a review on recent modifications and applications. International Journal of Biological Macromolecules, 150, 1072-1083. doi:10.1016/j.ijbiomac.2019.10.113 es_ES
dc.description.references Bilal, M., Khan, K. I. A., Thaheem, M. J., & Nasir, A. R. (2020). Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 276, 123250. doi:10.1016/j.jclepro.2020.123250 es_ES
dc.description.references Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123 es_ES
dc.description.references Cetiner, I., & Shea, A. D. (2018). Wood waste as an alternative thermal insulation for buildings. Energy and Buildings, 168, 374-384. doi:10.1016/j.enbuild.2018.03.019 es_ES
dc.description.references Collet, F., Achchaq, F., Djellab, K., Marmoret, L., & Beji, H. (2011). Water vapor properties of two hemp wools manufactured with different treatments. Construction and Building Materials, 25(2), 1079-1085. doi:10.1016/j.conbuildmat.2010.06.069 es_ES
dc.description.references Danihelová, A., Němec, M., Gergeľ, T., Gejdoš, M., Gordanová, J., & Sčensný, P. (2019). Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber. Sustainability, 11(10), 2968. doi:10.3390/su11102968 es_ES
dc.description.references Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 es_ES
dc.description.references Drochytka, R., Dvorakova, M., & Hodna, J. (2017). Performance Evaluation and Research of Alternative Thermal Insulation Based on Waste Polyester Fibers. Procedia Engineering, 195, 236-243. doi:10.1016/j.proeng.2017.04.549 es_ES
dc.description.references Elinwa, A. U., Abdulbasir, G., & Abdulkadir, G. (2018). Gum Arabic as an admixture for cement concrete production. Construction and Building Materials, 176, 201-212. doi:10.1016/j.conbuildmat.2018.04.160 es_ES
dc.description.references Forouharshad, M., Montazer, M., Moghadam, M. B., & Saligheh, O. (2011). Preparation of flame retardant wool using zirconium acetate optimized by CCD. Thermochimica Acta, 520(1-2), 134-138. doi:10.1016/j.tca.2011.03.029 es_ES
dc.description.references Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H. (2014). A novel effective medium theory for modelling the thermal conductivity of porous materials. International Journal of Heat and Mass Transfer, 68, 295-298. doi:10.1016/j.ijheatmasstransfer.2013.09.043 es_ES
dc.description.references Hittini, W., Mourad, A.-H. I., & Abu-Jdayil, B. (2019). Cleaner production of thermal insulation boards utilizing buffing dust waste. Journal of Cleaner Production, 236, 117603. doi:10.1016/j.jclepro.2019.117603 es_ES
dc.description.references Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 es_ES
dc.description.references Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727 es_ES
dc.description.references Korjenic, A., Zach, J., & Hroudová, J. (2016). The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy and Buildings, 116, 45-58. doi:10.1016/j.enbuild.2015.12.037 es_ES
dc.description.references Khan, A., Mohamed, M., Al Halo, N., & Benkreira, H. (2017). Acoustical properties of novel sound absorbers made from recycled granulates. Applied Acoustics, 127, 80-88. doi:10.1016/j.apacoust.2017.05.035 es_ES
dc.description.references Koponen, A., Kataja, M., & Timonen, J. (1997). Permeability and effective porosity of porous media. Physical Review E, 56(3), 3319-3325. doi:10.1103/physreve.56.3319 es_ES
dc.description.references Kremensas, A., Stapulionienė, R., Vaitkus, S., & Kairytė, A. (2017). Investigations on Physical-mechanical Properties of Effective Thermal Insulation Materials from Fibrous Hemp. Procedia Engineering, 172, 586-594. doi:10.1016/j.proeng.2017.02.069 es_ES
dc.description.references Leal Filho, W., Ellams, D., Han, S., Tyler, D., Boiten, V. J., Paço, A., … Balogun, A.-L. (2019). A review of the socio-economic advantages of textile recycling. Journal of Cleaner Production, 218, 10-20. doi:10.1016/j.jclepro.2019.01.210 es_ES
dc.description.references Li, W. D., & Ding, E. Y. (2007). Preparation and characterization of poly(ethylene terephthalate) fabrics treated by blends of cellulose nanocrystals and polyethylene glycol. Journal of Applied Polymer Science, 105(2), 373-378. doi:10.1002/app.26098 es_ES
dc.description.references Liuzzi, S., Rubino, C., Martellotta, F., Stefanizzi, P., Casavola, C., & Pappalettera, G. (2020). Characterization of biomass-based materials for building applications: The case of straw and olive tree waste. Industrial Crops and Products, 147, 112229. doi:10.1016/j.indcrop.2020.112229 es_ES
dc.description.references Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022 es_ES
dc.description.references Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021 es_ES
dc.description.references Matyka, M., Khalili, A., & Koza, Z. (2008). Tortuosity-porosity relation in porous media flow. Physical Review E, 78(2). doi:10.1103/physreve.78.026306 es_ES
dc.description.references Munaro, M. R., Tavares, S. F., & Bragança, L. (2020). Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. Journal of Cleaner Production, 260, 121134. doi:10.1016/j.jclepro.2020.121134 es_ES
dc.description.references Muthu, S. S., Li, Y., Hu, J.-Y., & Mok, P.-Y. (2012). Recyclability Potential Index (RPI): The concept and quantification of RPI for textile fibres. Ecological Indicators, 18, 58-62. doi:10.1016/j.ecolind.2011.10.003 es_ES
dc.description.references Muthu, S. S., Li, Y., Hu, J. Y., & Ze, L. (2012). Carbon footprint reduction in the textile process chain: Recycling of textile materials. Fibers and Polymers, 13(8), 1065-1070. doi:10.1007/s12221-012-1065-0 es_ES
dc.description.references Muthukumar, N., Thilagavathi, G., Neelakrishnan, S., & Poovaragan, P. T. (2017). Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers, 16(2), 245-252. doi:10.1080/15440478.2017.1414654 es_ES
dc.description.references Nakanishi, E. Y., Cabral, M. R., Gonçalves, P. de S., Santos, V. dos, & Savastano Junior, H. (2018). Formaldehyde-free particleboards using natural latex as the polymeric binder. Journal of Cleaner Production, 195, 1259-1269. doi:10.1016/j.jclepro.2018.06.019 es_ES
dc.description.references Pielesz, A., Freeman, H. ., Wesełucha-Birczyńska, A., Wysocki, M., & Włochowicz, A. (2003). Assessing secondary structure of a dyed wool fibre by means of FTIR and FTR spectroscopies. Journal of Molecular Structure, 651-653, 405-418. doi:10.1016/s0022-2860(03)00210-2 es_ES
dc.description.references Pisani, L. (2011). Simple Expression for the Tortuosity of Porous Media. Transport in Porous Media, 88(2), 193-203. doi:10.1007/s11242-011-9734-9 es_ES
dc.description.references Ramamoorthy, S. K., Persson, A., & Skrifvars, M. (2014). Reusing textile waste as reinforcements in composites. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40687 es_ES
dc.description.references Rubino, C., Bonet-Aracil, M., Liuzzi, S., Martellotta, F., & Stefanizzi, P. (2019). Thermal Characterization of Innovative Sustainable Building Materials from Wool Textile Fibers Waste. TECNICA ITALIANA-Italian Journal of Engineering Science, 63(2-4), 277-283. doi:10.18280/ti-ijes.632-423 es_ES
dc.description.references Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials, 12(23), 4020. doi:10.3390/ma12234020 es_ES
dc.description.references Sandin, G., & Peters, G. M. (2018). Environmental impact of textile reuse and recycling – A review. Journal of Cleaner Production, 184, 353-365. doi:10.1016/j.jclepro.2018.02.266 es_ES
dc.description.references Stefan de Carvalho, P., Nora M.,D., Cantorski da Rosa, L., Development of an acoustic absorbing material based on sunflower residue following the cleaner production techniques, J. Clean. Prod.. (in press). https://doi.org/10.1016/j.jclepro.2020.122478. es_ES
dc.description.references Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. doi:10.1016/j.jclepro.2020.120978 es_ES
dc.description.references Wojciechowska, E., Rom, M., Włochowicz, A., Wysocki, M., & Wesełucha-Birczyńska, A. (2004). The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. Journal of Molecular Structure, 704(1-3), 315-321. doi:10.1016/j.molstruc.2004.03.044 es_ES
dc.description.references Yousef, S., Tatariants, M., Tichonovas, M., Kliucininkas, L., Lukošiūtė, S.-I., & Yan, L. (2020). Sustainable green technology for recovery of cotton fibers and polyester from textile waste. Journal of Cleaner Production, 254, 120078. doi:10.1016/j.jclepro.2020.120078 es_ES
dc.description.references Zargarkazemi, A., Sadeghi-Kiakhani, M., Arami, M., & Bahrami, S. H. (2014). Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. The Journal of The Textile Institute, 106(1), 80-89. doi:10.1080/00405000.2014.906097 es_ES
dc.description.references Zhang, W., Yi, X., Sun, X., & Zhang, Y. (2008). Surface modification of non-woven poly (ethylene terephthalate) fibrous scaffold for improving cell attachment in animal cell culture. Journal of Chemical Technology & Biotechnology, 83(6), 904-911. doi:10.1002/jctb.1890 es_ES
dc.description.references Zhang, Q., Khan, M. U., Lin, X., Yi, W., & Lei, H. (2020). Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. Journal of Cleaner Production, 262, 121251. doi:10.1016/j.jclepro.2020.121251 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem