- -

Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quiles Cucarella, Eduardo es_ES
dc.contributor.author Roldán-Blay, Carlos es_ES
dc.contributor.author Escrivá-Escrivá, Guillermo es_ES
dc.contributor.author Roldán-Porta, Carlos es_ES
dc.date.accessioned 2021-05-25T03:32:20Z
dc.date.available 2021-05-25T03:32:20Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166741
dc.description.abstract [EN] In rural areas or in isolated communities in developing countries it is increasingly common to install micro-renewable sources, such as photovoltaic (PV) systems, by residential consumers without access to the utility distribution network. The reliability of the supply provided by these stand-alone generators is a key issue when designing the PV system. The proper system sizing for a minimum level of reliability avoids unacceptable continuity of supply (undersized system) and unnecessary costs (oversized system). This paper presents a method for the accurate sizing of stand-alone photovoltaic (SAPV) residential generation systems for a pre-established reliability level. The proposed method is based on the application of a sequential random Monte Carlo simulation to the system model. Uncertainties of solar radiation, energy demand, and component failures are simultaneously considered. The results of the case study facilitate the sizing of the main energy elements (solar panels and battery) depending on the required level of reliability, taking into account the uncertainties that affect this type of facility. The analysis carried out demonstrates that deterministic designs of SAPV systems based on average demand and radiation values or the average number of consecutive cloudy days can lead to inadequate levels of continuity of supply. es_ES
dc.description.sponsorship This work has been supported by research funds of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Renewable energy es_ES
dc.subject Photovoltaic generation es_ES
dc.subject Battery storage es_ES
dc.subject Reliability evaluation es_ES
dc.subject Monte Carlo Simulation es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12031274 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Quiles Cucarella, E.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C. (2020). Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability. Sustainability. 12(3):1-18. https://doi.org/10.3390/su12031274 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12031274 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\403535 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Twaha, S., & Ramli, M. A. M. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320-331. doi:10.1016/j.scs.2018.05.027 es_ES
dc.description.references Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621-1646. doi:10.1016/j.rser.2015.12.338 es_ES
dc.description.references Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings: A review. Applied Energy, 142, 80-94. doi:10.1016/j.apenergy.2014.12.028 es_ES
dc.description.references Evans, A., Strezov, V., & Evans, T. J. (2012). Assessment of utility energy storage options for increased renewable energy penetration. Renewable and Sustainable Energy Reviews, 16(6), 4141-4147. doi:10.1016/j.rser.2012.03.048 es_ES
dc.description.references https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-5089 es_ES
dc.description.references Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekała, W., & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306-312. doi:10.1016/j.rser.2017.07.032 es_ES
dc.description.references Abuagreb, M., Allehyani, M., & Johnson, B. K. (2019). Design and Test of a Combined PV and Battery System Under Multiple Load and Irradiation Conditions. 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). doi:10.1109/isgt.2019.8791565 es_ES
dc.description.references Moharil, R. M., & Kulkarni, P. S. (2010). Reliability analysis of solar photovoltaic system using hourly mean solar radiation data. Solar Energy, 84(4), 691-702. doi:10.1016/j.solener.2010.01.022 es_ES
dc.description.references Dissawa, D. M. L. H., Godaliyadda, G. M. R. I., Ekanayake, M. P. B., Ekanayake, J. B., & Agalgaonkar, A. P. (2017). Cross-correlation based cloud motion estimation for short-term solar irradiation predictions. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). doi:10.1109/iciinfs.2017.8300338 es_ES
dc.description.references Kaplani, E., & Kaplanis, S. (2012). A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations. Applied Energy, 97, 970-981. doi:10.1016/j.apenergy.2011.12.016 es_ES
dc.description.references Benmouiza, K., Tadj, M., & Cheknane, A. (2016). Classification of hourly solar radiation using fuzzy c-means algorithm for optimal stand-alone PV system sizing. International Journal of Electrical Power & Energy Systems, 82, 233-241. doi:10.1016/j.ijepes.2016.03.019 es_ES
dc.description.references Ozoegwu, C. G. (2019). Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number. Journal of Cleaner Production, 216, 1-13. doi:10.1016/j.jclepro.2019.01.096 es_ES
dc.description.references Palensky, P., & Dietrich, D. (2011). Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Transactions on Industrial Informatics, 7(3), 381-388. doi:10.1109/tii.2011.2158841 es_ES
dc.description.references Roldán-Blay, C., Escrivá-Escrivá, G., & Roldán-Porta, C. (2019). Improving the benefits of demand response participation in facilities with distributed energy resources. Energy, 169, 710-718. doi:10.1016/j.energy.2018.12.102 es_ES
dc.description.references Roldán-Porta, Roldán-Blay, Escrivá-Escrivá, & Quiles. (2019). Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids. Sustainability, 11(19), 5472. doi:10.3390/su11195472 es_ES
dc.description.references Huang, Y., Yang, L., Liu, S., & Wang, G. (2018). Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation. Sustainability, 10(11), 4198. doi:10.3390/su10114198 es_ES
dc.description.references Goel, S., & Sharma, R. (2017). Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. Renewable and Sustainable Energy Reviews, 78, 1378-1389. doi:10.1016/j.rser.2017.05.200 es_ES
dc.description.references Weniger, J., Tjaden, T., & Quaschning, V. (2014). Sizing of Residential PV Battery Systems. Energy Procedia, 46, 78-87. doi:10.1016/j.egypro.2014.01.160 es_ES
dc.description.references Maleki, A., Rosen, M., & Pourfayaz, F. (2017). Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications. Sustainability, 9(8), 1314. doi:10.3390/su9081314 es_ES
dc.description.references Cao, S., Hasan, A., & Sirén, K. (2014). Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices. Applied Energy, 113, 230-247. doi:10.1016/j.apenergy.2013.07.031 es_ES
dc.description.references Ren, H., Wu, Q., Gao, W., & Zhou, W. (2016). Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications. Energy, 113, 702-712. doi:10.1016/j.energy.2016.07.091 es_ES
dc.description.references Ghafoor, A., & Munir, A. (2015). Design and economics analysis of an off-grid PV system for household electrification. Renewable and Sustainable Energy Reviews, 42, 496-502. doi:10.1016/j.rser.2014.10.012 es_ES
dc.description.references Maleki, A., Hajinezhad, A., & Rosen, M. A. (2016). Modeling and optimal design of an off-grid hybrid system for electricity generation using various biodiesel fuels: a case study for Davarzan, Iran. Biofuels, 7(6), 699-712. doi:10.1080/17597269.2016.1192443 es_ES
dc.description.references Castillo-Cagigal, M., Caamaño-Martín, E., Matallanas, E., Masa-Bote, D., Gutiérrez, A., Monasterio-Huelin, F., & Jiménez-Leube, J. (2011). PV self-consumption optimization with storage and Active DSM for the residential sector. Solar Energy, 85(9), 2338-2348. doi:10.1016/j.solener.2011.06.028 es_ES
dc.description.references Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380-389. doi:10.1016/j.apenergy.2009.08.012 es_ES
dc.description.references Yadav, A. K., & Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772-781. doi:10.1016/j.rser.2013.08.055 es_ES
dc.description.references Roldán-Blay, C., Escrivá-Escrivá, G., Roldán-Porta, C., & Álvarez-Bel, C. (2017). An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy, 132, 126-135. doi:10.1016/j.energy.2017.05.038 es_ES
dc.description.references Hoevenaars, E. J., & Crawford, C. A. (2012). Implications of temporal resolution for modeling renewables-based power systems. Renewable Energy, 41, 285-293. doi:10.1016/j.renene.2011.11.013 es_ES
dc.description.references Cao, S., & Sirén, K. (2014). Impact of simulation time-resolution on the matching of PV production and household electric demand. Applied Energy, 128, 192-208. doi:10.1016/j.apenergy.2014.04.075 es_ES
dc.description.references Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability, 10(9), 3117. doi:10.3390/su10093117 es_ES
dc.description.references Kosmadakis, I., Elmasides, C., Eleftheriou, D., & Tsagarakis, K. (2019). A Techno-Economic Analysis of a PV-Battery System in Greece. Energies, 12(7), 1357. doi:10.3390/en12071357 es_ES
dc.description.references Faza, A. (2018). A probabilistic model for estimating the effects of photovoltaic sources on the power systems reliability. Reliability Engineering & System Safety, 171, 67-77. doi:10.1016/j.ress.2017.11.008 es_ES
dc.description.references Borges, C. L. T. (2012). An overview of reliability models and methods for distribution systems with renewable energy distributed generation. Renewable and Sustainable Energy Reviews, 16(6), 4008-4015. doi:10.1016/j.rser.2012.03.055 es_ES
dc.description.references Roldán-Blay, C., Roldán-Porta, C., Peñalvo-López, E., & Escrivá-Escrivá, G. (2017). Optimal Energy Management of an Academic Building with Distributed Generation and Energy Storage Systems. IOP Conference Series: Earth and Environmental Science, 78, 012018. doi:10.1088/1755-1315/78/1/012018 es_ES
dc.description.references Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030 es_ES
dc.description.references Wang, J.-Y., Qian, Z., Zareipour, H., & Wood, D. (2018). Performance assessment of photovoltaic modules based on daily energy generation estimation. Energy, 165, 1160-1172. doi:10.1016/j.energy.2018.10.047 es_ES
dc.description.references Eltawil, M. A., & Zhao, Z. (2010). Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renewable and Sustainable Energy Reviews, 14(1), 112-129. doi:10.1016/j.rser.2009.07.015 es_ES
dc.description.references Zhang, P., Li, W., Li, S., Wang, Y., & Xiao, W. (2013). Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Applied Energy, 104, 822-833. doi:10.1016/j.apenergy.2012.12.010 es_ES
dc.description.references Billinton, R., & Jonnavithula, A. (1997). Application of sequential Monte Carlo simulation to evaluation of distributions of composite system indices. IEE Proceedings - Generation, Transmission and Distribution, 144(2), 87. doi:10.1049/ip-gtd:19970929 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem