Mostrar el registro sencillo del ítem
dc.contributor.author | Quiles Cucarella, Eduardo | es_ES |
dc.contributor.author | Roldán-Blay, Carlos | es_ES |
dc.contributor.author | Escrivá-Escrivá, Guillermo | es_ES |
dc.contributor.author | Roldán-Porta, Carlos | es_ES |
dc.date.accessioned | 2021-05-25T03:32:20Z | |
dc.date.available | 2021-05-25T03:32:20Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166741 | |
dc.description.abstract | [EN] In rural areas or in isolated communities in developing countries it is increasingly common to install micro-renewable sources, such as photovoltaic (PV) systems, by residential consumers without access to the utility distribution network. The reliability of the supply provided by these stand-alone generators is a key issue when designing the PV system. The proper system sizing for a minimum level of reliability avoids unacceptable continuity of supply (undersized system) and unnecessary costs (oversized system). This paper presents a method for the accurate sizing of stand-alone photovoltaic (SAPV) residential generation systems for a pre-established reliability level. The proposed method is based on the application of a sequential random Monte Carlo simulation to the system model. Uncertainties of solar radiation, energy demand, and component failures are simultaneously considered. The results of the case study facilitate the sizing of the main energy elements (solar panels and battery) depending on the required level of reliability, taking into account the uncertainties that affect this type of facility. The analysis carried out demonstrates that deterministic designs of SAPV systems based on average demand and radiation values or the average number of consecutive cloudy days can lead to inadequate levels of continuity of supply. | es_ES |
dc.description.sponsorship | This work has been supported by research funds of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Renewable energy | es_ES |
dc.subject | Photovoltaic generation | es_ES |
dc.subject | Battery storage | es_ES |
dc.subject | Reliability evaluation | es_ES |
dc.subject | Monte Carlo Simulation | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12031274 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Quiles Cucarella, E.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C. (2020). Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability. Sustainability. 12(3):1-18. https://doi.org/10.3390/su12031274 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12031274 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\403535 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Twaha, S., & Ramli, M. A. M. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320-331. doi:10.1016/j.scs.2018.05.027 | es_ES |
dc.description.references | Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621-1646. doi:10.1016/j.rser.2015.12.338 | es_ES |
dc.description.references | Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings: A review. Applied Energy, 142, 80-94. doi:10.1016/j.apenergy.2014.12.028 | es_ES |
dc.description.references | Evans, A., Strezov, V., & Evans, T. J. (2012). Assessment of utility energy storage options for increased renewable energy penetration. Renewable and Sustainable Energy Reviews, 16(6), 4141-4147. doi:10.1016/j.rser.2012.03.048 | es_ES |
dc.description.references | https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-5089 | es_ES |
dc.description.references | Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekała, W., & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306-312. doi:10.1016/j.rser.2017.07.032 | es_ES |
dc.description.references | Abuagreb, M., Allehyani, M., & Johnson, B. K. (2019). Design and Test of a Combined PV and Battery System Under Multiple Load and Irradiation Conditions. 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). doi:10.1109/isgt.2019.8791565 | es_ES |
dc.description.references | Moharil, R. M., & Kulkarni, P. S. (2010). Reliability analysis of solar photovoltaic system using hourly mean solar radiation data. Solar Energy, 84(4), 691-702. doi:10.1016/j.solener.2010.01.022 | es_ES |
dc.description.references | Dissawa, D. M. L. H., Godaliyadda, G. M. R. I., Ekanayake, M. P. B., Ekanayake, J. B., & Agalgaonkar, A. P. (2017). Cross-correlation based cloud motion estimation for short-term solar irradiation predictions. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). doi:10.1109/iciinfs.2017.8300338 | es_ES |
dc.description.references | Kaplani, E., & Kaplanis, S. (2012). A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations. Applied Energy, 97, 970-981. doi:10.1016/j.apenergy.2011.12.016 | es_ES |
dc.description.references | Benmouiza, K., Tadj, M., & Cheknane, A. (2016). Classification of hourly solar radiation using fuzzy c-means algorithm for optimal stand-alone PV system sizing. International Journal of Electrical Power & Energy Systems, 82, 233-241. doi:10.1016/j.ijepes.2016.03.019 | es_ES |
dc.description.references | Ozoegwu, C. G. (2019). Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number. Journal of Cleaner Production, 216, 1-13. doi:10.1016/j.jclepro.2019.01.096 | es_ES |
dc.description.references | Palensky, P., & Dietrich, D. (2011). Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Transactions on Industrial Informatics, 7(3), 381-388. doi:10.1109/tii.2011.2158841 | es_ES |
dc.description.references | Roldán-Blay, C., Escrivá-Escrivá, G., & Roldán-Porta, C. (2019). Improving the benefits of demand response participation in facilities with distributed energy resources. Energy, 169, 710-718. doi:10.1016/j.energy.2018.12.102 | es_ES |
dc.description.references | Roldán-Porta, Roldán-Blay, Escrivá-Escrivá, & Quiles. (2019). Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids. Sustainability, 11(19), 5472. doi:10.3390/su11195472 | es_ES |
dc.description.references | Huang, Y., Yang, L., Liu, S., & Wang, G. (2018). Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation. Sustainability, 10(11), 4198. doi:10.3390/su10114198 | es_ES |
dc.description.references | Goel, S., & Sharma, R. (2017). Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. Renewable and Sustainable Energy Reviews, 78, 1378-1389. doi:10.1016/j.rser.2017.05.200 | es_ES |
dc.description.references | Weniger, J., Tjaden, T., & Quaschning, V. (2014). Sizing of Residential PV Battery Systems. Energy Procedia, 46, 78-87. doi:10.1016/j.egypro.2014.01.160 | es_ES |
dc.description.references | Maleki, A., Rosen, M., & Pourfayaz, F. (2017). Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications. Sustainability, 9(8), 1314. doi:10.3390/su9081314 | es_ES |
dc.description.references | Cao, S., Hasan, A., & Sirén, K. (2014). Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices. Applied Energy, 113, 230-247. doi:10.1016/j.apenergy.2013.07.031 | es_ES |
dc.description.references | Ren, H., Wu, Q., Gao, W., & Zhou, W. (2016). Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications. Energy, 113, 702-712. doi:10.1016/j.energy.2016.07.091 | es_ES |
dc.description.references | Ghafoor, A., & Munir, A. (2015). Design and economics analysis of an off-grid PV system for household electrification. Renewable and Sustainable Energy Reviews, 42, 496-502. doi:10.1016/j.rser.2014.10.012 | es_ES |
dc.description.references | Maleki, A., Hajinezhad, A., & Rosen, M. A. (2016). Modeling and optimal design of an off-grid hybrid system for electricity generation using various biodiesel fuels: a case study for Davarzan, Iran. Biofuels, 7(6), 699-712. doi:10.1080/17597269.2016.1192443 | es_ES |
dc.description.references | Castillo-Cagigal, M., Caamaño-Martín, E., Matallanas, E., Masa-Bote, D., Gutiérrez, A., Monasterio-Huelin, F., & Jiménez-Leube, J. (2011). PV self-consumption optimization with storage and Active DSM for the residential sector. Solar Energy, 85(9), 2338-2348. doi:10.1016/j.solener.2011.06.028 | es_ES |
dc.description.references | Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380-389. doi:10.1016/j.apenergy.2009.08.012 | es_ES |
dc.description.references | Yadav, A. K., & Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772-781. doi:10.1016/j.rser.2013.08.055 | es_ES |
dc.description.references | Roldán-Blay, C., Escrivá-Escrivá, G., Roldán-Porta, C., & Álvarez-Bel, C. (2017). An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy, 132, 126-135. doi:10.1016/j.energy.2017.05.038 | es_ES |
dc.description.references | Hoevenaars, E. J., & Crawford, C. A. (2012). Implications of temporal resolution for modeling renewables-based power systems. Renewable Energy, 41, 285-293. doi:10.1016/j.renene.2011.11.013 | es_ES |
dc.description.references | Cao, S., & Sirén, K. (2014). Impact of simulation time-resolution on the matching of PV production and household electric demand. Applied Energy, 128, 192-208. doi:10.1016/j.apenergy.2014.04.075 | es_ES |
dc.description.references | Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability, 10(9), 3117. doi:10.3390/su10093117 | es_ES |
dc.description.references | Kosmadakis, I., Elmasides, C., Eleftheriou, D., & Tsagarakis, K. (2019). A Techno-Economic Analysis of a PV-Battery System in Greece. Energies, 12(7), 1357. doi:10.3390/en12071357 | es_ES |
dc.description.references | Faza, A. (2018). A probabilistic model for estimating the effects of photovoltaic sources on the power systems reliability. Reliability Engineering & System Safety, 171, 67-77. doi:10.1016/j.ress.2017.11.008 | es_ES |
dc.description.references | Borges, C. L. T. (2012). An overview of reliability models and methods for distribution systems with renewable energy distributed generation. Renewable and Sustainable Energy Reviews, 16(6), 4008-4015. doi:10.1016/j.rser.2012.03.055 | es_ES |
dc.description.references | Roldán-Blay, C., Roldán-Porta, C., Peñalvo-López, E., & Escrivá-Escrivá, G. (2017). Optimal Energy Management of an Academic Building with Distributed Generation and Energy Storage Systems. IOP Conference Series: Earth and Environmental Science, 78, 012018. doi:10.1088/1755-1315/78/1/012018 | es_ES |
dc.description.references | Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030 | es_ES |
dc.description.references | Wang, J.-Y., Qian, Z., Zareipour, H., & Wood, D. (2018). Performance assessment of photovoltaic modules based on daily energy generation estimation. Energy, 165, 1160-1172. doi:10.1016/j.energy.2018.10.047 | es_ES |
dc.description.references | Eltawil, M. A., & Zhao, Z. (2010). Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renewable and Sustainable Energy Reviews, 14(1), 112-129. doi:10.1016/j.rser.2009.07.015 | es_ES |
dc.description.references | Zhang, P., Li, W., Li, S., Wang, Y., & Xiao, W. (2013). Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Applied Energy, 104, 822-833. doi:10.1016/j.apenergy.2012.12.010 | es_ES |
dc.description.references | Billinton, R., & Jonnavithula, A. (1997). Application of sequential Monte Carlo simulation to evaluation of distributions of composite system indices. IEE Proceedings - Generation, Transmission and Distribution, 144(2), 87. doi:10.1049/ip-gtd:19970929 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |