- -

Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability

Mostrar el registro completo del ítem

Quiles Cucarella, E.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C. (2020). Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability. Sustainability. 12(3):1-18. https://doi.org/10.3390/su12031274

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166741

Ficheros en el ítem

Metadatos del ítem

Título: Accurate Sizing of Residential Stand-Alone Photovoltaic Systems Considering System Reliability
Autor: Quiles Cucarella, Eduardo Roldán-Blay, Carlos Escrivá-Escrivá, Guillermo Roldán-Porta, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] In rural areas or in isolated communities in developing countries it is increasingly common to install micro-renewable sources, such as photovoltaic (PV) systems, by residential consumers without access to the utility ...[+]
Palabras clave: Renewable energy , Photovoltaic generation , Battery storage , Reliability evaluation , Monte Carlo Simulation
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12031274
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su12031274
Agradecimientos:
This work has been supported by research funds of the Universitat Politecnica de Valencia.
Tipo: Artículo

References

Twaha, S., & Ramli, M. A. M. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320-331. doi:10.1016/j.scs.2018.05.027

Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621-1646. doi:10.1016/j.rser.2015.12.338

Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings: A review. Applied Energy, 142, 80-94. doi:10.1016/j.apenergy.2014.12.028 [+]
Twaha, S., & Ramli, M. A. M. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320-331. doi:10.1016/j.scs.2018.05.027

Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621-1646. doi:10.1016/j.rser.2015.12.338

Luthander, R., Widén, J., Nilsson, D., & Palm, J. (2015). Photovoltaic self-consumption in buildings: A review. Applied Energy, 142, 80-94. doi:10.1016/j.apenergy.2014.12.028

Evans, A., Strezov, V., & Evans, T. J. (2012). Assessment of utility energy storage options for increased renewable energy penetration. Renewable and Sustainable Energy Reviews, 16(6), 4141-4147. doi:10.1016/j.rser.2012.03.048

https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-5089

Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekała, W., & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306-312. doi:10.1016/j.rser.2017.07.032

Abuagreb, M., Allehyani, M., & Johnson, B. K. (2019). Design and Test of a Combined PV and Battery System Under Multiple Load and Irradiation Conditions. 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). doi:10.1109/isgt.2019.8791565

Moharil, R. M., & Kulkarni, P. S. (2010). Reliability analysis of solar photovoltaic system using hourly mean solar radiation data. Solar Energy, 84(4), 691-702. doi:10.1016/j.solener.2010.01.022

Dissawa, D. M. L. H., Godaliyadda, G. M. R. I., Ekanayake, M. P. B., Ekanayake, J. B., & Agalgaonkar, A. P. (2017). Cross-correlation based cloud motion estimation for short-term solar irradiation predictions. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). doi:10.1109/iciinfs.2017.8300338

Kaplani, E., & Kaplanis, S. (2012). A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations. Applied Energy, 97, 970-981. doi:10.1016/j.apenergy.2011.12.016

Benmouiza, K., Tadj, M., & Cheknane, A. (2016). Classification of hourly solar radiation using fuzzy c-means algorithm for optimal stand-alone PV system sizing. International Journal of Electrical Power & Energy Systems, 82, 233-241. doi:10.1016/j.ijepes.2016.03.019

Ozoegwu, C. G. (2019). Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number. Journal of Cleaner Production, 216, 1-13. doi:10.1016/j.jclepro.2019.01.096

Palensky, P., & Dietrich, D. (2011). Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Transactions on Industrial Informatics, 7(3), 381-388. doi:10.1109/tii.2011.2158841

Roldán-Blay, C., Escrivá-Escrivá, G., & Roldán-Porta, C. (2019). Improving the benefits of demand response participation in facilities with distributed energy resources. Energy, 169, 710-718. doi:10.1016/j.energy.2018.12.102

Roldán-Porta, Roldán-Blay, Escrivá-Escrivá, & Quiles. (2019). Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids. Sustainability, 11(19), 5472. doi:10.3390/su11195472

Huang, Y., Yang, L., Liu, S., & Wang, G. (2018). Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation. Sustainability, 10(11), 4198. doi:10.3390/su10114198

Goel, S., & Sharma, R. (2017). Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review. Renewable and Sustainable Energy Reviews, 78, 1378-1389. doi:10.1016/j.rser.2017.05.200

Weniger, J., Tjaden, T., & Quaschning, V. (2014). Sizing of Residential PV Battery Systems. Energy Procedia, 46, 78-87. doi:10.1016/j.egypro.2014.01.160

Maleki, A., Rosen, M., & Pourfayaz, F. (2017). Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications. Sustainability, 9(8), 1314. doi:10.3390/su9081314

Cao, S., Hasan, A., & Sirén, K. (2014). Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices. Applied Energy, 113, 230-247. doi:10.1016/j.apenergy.2013.07.031

Ren, H., Wu, Q., Gao, W., & Zhou, W. (2016). Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications. Energy, 113, 702-712. doi:10.1016/j.energy.2016.07.091

Ghafoor, A., & Munir, A. (2015). Design and economics analysis of an off-grid PV system for household electrification. Renewable and Sustainable Energy Reviews, 42, 496-502. doi:10.1016/j.rser.2014.10.012

Maleki, A., Hajinezhad, A., & Rosen, M. A. (2016). Modeling and optimal design of an off-grid hybrid system for electricity generation using various biodiesel fuels: a case study for Davarzan, Iran. Biofuels, 7(6), 699-712. doi:10.1080/17597269.2016.1192443

Castillo-Cagigal, M., Caamaño-Martín, E., Matallanas, E., Masa-Bote, D., Gutiérrez, A., Monasterio-Huelin, F., & Jiménez-Leube, J. (2011). PV self-consumption optimization with storage and Active DSM for the residential sector. Solar Energy, 85(9), 2338-2348. doi:10.1016/j.solener.2011.06.028

Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380-389. doi:10.1016/j.apenergy.2009.08.012

Yadav, A. K., & Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772-781. doi:10.1016/j.rser.2013.08.055

Roldán-Blay, C., Escrivá-Escrivá, G., Roldán-Porta, C., & Álvarez-Bel, C. (2017). An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy, 132, 126-135. doi:10.1016/j.energy.2017.05.038

Hoevenaars, E. J., & Crawford, C. A. (2012). Implications of temporal resolution for modeling renewables-based power systems. Renewable Energy, 41, 285-293. doi:10.1016/j.renene.2011.11.013

Cao, S., & Sirén, K. (2014). Impact of simulation time-resolution on the matching of PV production and household electric demand. Applied Energy, 128, 192-208. doi:10.1016/j.apenergy.2014.04.075

Cucchiella, F., D’Adamo, I., Gastaldi, M., & Stornelli, V. (2018). Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis. Sustainability, 10(9), 3117. doi:10.3390/su10093117

Kosmadakis, I., Elmasides, C., Eleftheriou, D., & Tsagarakis, K. (2019). A Techno-Economic Analysis of a PV-Battery System in Greece. Energies, 12(7), 1357. doi:10.3390/en12071357

Faza, A. (2018). A probabilistic model for estimating the effects of photovoltaic sources on the power systems reliability. Reliability Engineering & System Safety, 171, 67-77. doi:10.1016/j.ress.2017.11.008

Borges, C. L. T. (2012). An overview of reliability models and methods for distribution systems with renewable energy distributed generation. Renewable and Sustainable Energy Reviews, 16(6), 4008-4015. doi:10.1016/j.rser.2012.03.055

Roldán-Blay, C., Roldán-Porta, C., Peñalvo-López, E., & Escrivá-Escrivá, G. (2017). Optimal Energy Management of an Academic Building with Distributed Generation and Energy Storage Systems. IOP Conference Series: Earth and Environmental Science, 78, 012018. doi:10.1088/1755-1315/78/1/012018

Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030

Wang, J.-Y., Qian, Z., Zareipour, H., & Wood, D. (2018). Performance assessment of photovoltaic modules based on daily energy generation estimation. Energy, 165, 1160-1172. doi:10.1016/j.energy.2018.10.047

Eltawil, M. A., & Zhao, Z. (2010). Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renewable and Sustainable Energy Reviews, 14(1), 112-129. doi:10.1016/j.rser.2009.07.015

Zhang, P., Li, W., Li, S., Wang, Y., & Xiao, W. (2013). Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Applied Energy, 104, 822-833. doi:10.1016/j.apenergy.2012.12.010

Billinton, R., & Jonnavithula, A. (1997). Application of sequential Monte Carlo simulation to evaluation of distributions of composite system indices. IEE Proceedings - Generation, Transmission and Distribution, 144(2), 87. doi:10.1049/ip-gtd:19970929

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem