- -

Monte Carlo model of a BEGe detector to support gamma-spectrometry in an emergency response

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Monte Carlo model of a BEGe detector to support gamma-spectrometry in an emergency response

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ordóñez, J. es_ES
dc.contributor.author Martorell Alsina, Sebastián Salvador es_ES
dc.contributor.author Gallardo Bermell, Sergio es_ES
dc.contributor.author Ortiz Moragón, Josefina es_ES
dc.date.accessioned 2021-05-25T03:32:40Z
dc.date.available 2021-05-25T03:32:40Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0969-806X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166749
dc.description.abstract [EN] One of the problems of measuring high radioactivity in an emergency scenario is the fact that the detector can become saturated or reach a measuring dead time too high to give reliable results, which means repeating the measurement in different conditions with the associated delay in obtaining the results and the laboratory workers' risk of exposure. The counting rate can be controlled by varying the sample-to-detector distance as well as by using different source volumes. A Monte Carlo model of a BEGe detector was developed to analyse the system efficiency response for several measuring configurations (distances and volumes) using the MCNP6 code. The total efficiency curves were obtained for an energy range between 59.5 keV and 1836 keV. The simulations provided an estimation of the admissible gamma-rate for different source volumes (in water matrix) and sample-to-detector distances to avoid detector saturation in given measurement conditions. The results were a compromise between geometry, distance and measuring time for certain emergency situations. Three case studies are provided to show the approach's effectiveness. es_ES
dc.description.sponsorship The authors gratefully acknowledge the Catedra CSN-UPV Vicente Serradell, Spain as well as the Laboratorio de Radiactividad Ambiental (Universitat Politecnica de Valencia), Spain, for the dedicated funding and resources for this research work under Grant No. FPI-2015-S2-1576. The authors are also grateful to the Valencian Agency for Security and Emergency and the Generalitat Valenciana for their support in the "Convenio de colaboracion entre la Agencia Valenciana de Seguridad y Respuesta a las Emergencias y la Universitat Politecnica de Valencia para el Desarrollo del Plan de Vigilancia Radiologica en Emergencias" under Grant No. S7042000, 2018. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Radiation Physics and Chemistry es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Monte Carlo model of a BEGe detector to support gamma-spectrometry in an emergency response es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.radphyschem.2020.108837 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2015-S2-1576/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Agencia Valenciana de Seguridad y Respuesta a las Emergencias//S7042000/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Ordóñez, J.; Martorell Alsina, SS.; Gallardo Bermell, S.; Ortiz Moragón, J. (2020). Monte Carlo model of a BEGe detector to support gamma-spectrometry in an emergency response. Radiation Physics and Chemistry. 172:1-7. https://doi.org/10.1016/j.radphyschem.2020.108837 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 3rd International Conference on Dosimetry and its Applications (ICDA-3) es_ES
dc.relation.conferencedate Mayo 27-31,2019 es_ES
dc.relation.conferenceplace Lisbon, Portugal es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.radphyschem.2020.108837 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 172 es_ES
dc.relation.pasarela S\406229 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Agencia Valenciana de Seguridad y Respuesta a las Emergencias es_ES
dc.description.references Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8 es_ES
dc.description.references Blank, B., Souin, J., Ascher, P., Audirac, L., Canchel, G., Gerbaux, M., … Thomas, J. C. (2015). High-precision efficiency calibration of a high-purity co-axial germanium detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 776, 34-44. doi:10.1016/j.nima.2014.12.071 es_ES
dc.description.references Chham, E., García, F. P., El Bardouni, T., Ferro-García, M. A., Azahra, M., Benaalilou, K., … Kaddour, M. (2015). Monte Carlo analysis of the influence of germanium dead layer thickness on the HPGe gamma detector experimental efficiency measured by use of extended sources. Applied Radiation and Isotopes, 95, 30-35. doi:10.1016/j.apradiso.2014.09.007 es_ES
dc.description.references Croudace, I. W., Warwick, P. E., Reading, D. G., & Russell, B. C. (2016). Recent contributions to the rapid screening of radionuclides in emergency responses and nuclear forensics. TrAC Trends in Analytical Chemistry, 85, 120-129. doi:10.1016/j.trac.2016.05.007 es_ES
dc.description.references Dababneh, S., Al-Nemri, E., & Sharaf, J. (2014). Application of Geant4 in routine close geometry gamma spectroscopy for environmental samples. Journal of Environmental Radioactivity, 134, 27-34. doi:10.1016/j.jenvrad.2014.02.019 es_ES
dc.description.references Fonseca, T. C. F., Mendes, B. M., & Hunt, J. G. (2017). Simulation of internal contamination screening with dose rate meters. Radiation Physics and Chemistry, 140, 112-115. doi:10.1016/j.radphyschem.2017.03.047 es_ES
dc.description.references Garcı́a-Talavera, M., Neder, H., Daza, M. J., & Quintana, B. (2000). Towards a proper modeling of detector and source characteristics in Monte Carlo simulations. Applied Radiation and Isotopes, 52(3), 777-783. doi:10.1016/s0969-8043(99)00244-4 es_ES
dc.description.references Hernandez-Prieto, A., Quintana, B., Martìn, S., & Domingo-Pardo, C. (2016). Study of accuracy in the position determination with SALSA, a γ-scanning system for the characterization of segmented HPGe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 823, 98-106. doi:10.1016/j.nima.2016.03.103 es_ES
dc.description.references Hurtado, S., Garcı́a-León, M., & Garcı́a-Tenorio, R. (2004). GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 518(3), 764-774. doi:10.1016/j.nima.2003.09.057 es_ES
dc.description.references Jurado Vargas, M., & Guerra, A. L. (2006). Application of PENELOPE code to the efficiency calibration of coaxial germanium detectors. Applied Radiation and Isotopes, 64(10-11), 1319-1322. doi:10.1016/j.apradiso.2006.02.037 es_ES
dc.description.references Maučec, M., de Meijer, R. J., Rigollet, C., Hendriks, P. H. G. M., & Jones, D. G. (2004). Detection of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of detection depth limits. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 525(3), 593-609. doi:10.1016/j.nima.2004.01.074 es_ES
dc.description.references Ródenas, J., Martinavarro, A., & Rius, V. (2000). Validation of the MCNP code for the simulation of Ge-detector calibration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 450(1), 88-97. doi:10.1016/s0168-9002(00)00253-9 es_ES
dc.description.references Ródenas, J., Gallardo, S., Ballester, S., Primault, V., & Ortiz, J. (2007). Application of the Monte Carlo method to the analysis of measurement geometries for the calibration of a HP Ge detector in an environmental radioactivity laboratory. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 263(1), 144-148. doi:10.1016/j.nimb.2007.04.210 es_ES
dc.description.references Sima, O., Arnold, D., & Dovlete, C. (2001). Journal of Radioanalytical and Nuclear Chemistry, 248(2), 359-364. doi:10.1023/a:1010619806898 es_ES
dc.description.references Vidmar, T., Aubineau-Laniece, I., Anagnostakis, M. J., Arnold, D., Brettner-Messler, R., Budjas, D., … Vidmar, G. (2008). An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Applied Radiation and Isotopes, 66(6-7), 764-768. doi:10.1016/j.apradiso.2008.02.015 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem