- -

A model for sector restructuring through genetic algorithm and inverse DEA

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A model for sector restructuring through genetic algorithm and inverse DEA

Show full item record

Guijarro, F.; Martínez-Gómez, M.; Visbal-Cadavid, D. (2020). A model for sector restructuring through genetic algorithm and inverse DEA. Expert Systems with Applications. 154:1-13. https://doi.org/10.1016/j.eswa.2020.113422

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166752

Files in this item

Item Metadata

Title: A model for sector restructuring through genetic algorithm and inverse DEA
Author: Guijarro, Francisco Martínez-Gómez, Mónica Visbal-Cadavid, Delimiro
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials
Issued date:
Abstract:
[EN] The aim of this study is to devise a sector restructuring model in which all the decision making units (DMUs) satisfy a predefined global efficiency level. The proposal makes several realistic assumptions regarding ...[+]
Subjects: Mergers , Restructuring , Inverse data envelopment analysis , Genetic algorithm , Cardinality constraint
Copyrigths: Reserva de todos los derechos
Source:
Expert Systems with Applications. (issn: 0957-4174 )
DOI: 10.1016/j.eswa.2020.113422
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.eswa.2020.113422
Type: Artículo

References

Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data envelopment analysis. Economics of Education Review, 22(1), 89-97. doi:10.1016/s0272-7757(01)00068-1

Ahuja, R. K., & Orlin, J. B. (2001). Inverse Optimization. Operations Research, 49(5), 771-783. doi:10.1287/opre.49.5.771.10607

Amin, G. R., Al-Muharrami, S., & Toloo, M. (2019). A combined goal programming and inverse DEA method for target setting in mergers. Expert Systems with Applications, 115, 412-417. doi:10.1016/j.eswa.2018.08.018 [+]
Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data envelopment analysis. Economics of Education Review, 22(1), 89-97. doi:10.1016/s0272-7757(01)00068-1

Ahuja, R. K., & Orlin, J. B. (2001). Inverse Optimization. Operations Research, 49(5), 771-783. doi:10.1287/opre.49.5.771.10607

Amin, G. R., Al-Muharrami, S., & Toloo, M. (2019). A combined goal programming and inverse DEA method for target setting in mergers. Expert Systems with Applications, 115, 412-417. doi:10.1016/j.eswa.2018.08.018

Amin, G. R., Emrouznejad, A., & Gattoufi, S. (2017). Minor and major consolidations in inverse DEA: Definition and determination. Computers & Industrial Engineering, 103, 193-200. doi:10.1016/j.cie.2016.11.029

Amin, G. R., Emrouznejad, A., & Gattoufi, S. (2017). Modelling generalized firms’ restructuring using inverse DEA. Journal of Productivity Analysis, 48(1), 51-61. doi:10.1007/s11123-017-0501-y

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078

Beckmann, T., & Forbes, W. (2004). An Examination of Takeovers, Job Loss and the Wage Decline within UK Industry. European Financial Management, 10(1), 141-165. doi:10.1111/j.1468-036x.2004.00243.x

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8

Dentchev, N. A., & Heene, A. (2004). Managing the reputation of restructuring corporations: send the right signal to the right stakeholder. Journal of Public Affairs, 4(1), 56-72. doi:10.1002/pa.171

Emrouznejad, A., Yang, G., & Amin, G. R. (2018). A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries. Journal of the Operational Research Society, 70(7), 1079-1090. doi:10.1080/01605682.2018.1489344

Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2015). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Computing and Applications, 27(3), 707-725. doi:10.1007/s00521-015-1890-3

García, F., Guijarro, F., & Moya, I. (2010). Ranking Spanish savings banks: A multicriteria approach. Mathematical and Computer Modelling, 52(7-8), 1058-1065. doi:10.1016/j.mcm.2010.02.015

Gattoufi, S., Amin, G. R., & Emrouznejad, A. (2012). A new inverse DEA method for merging banks. IMA Journal of Management Mathematics, 25(1), 73-87. doi:10.1093/imaman/dps027

González, M., López-Espín, J. J., Aparicio, J., Giménez, D., & Pastor, J. T. (2015). Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis. Procedia Computer Science, 51, 374-383. doi:10.1016/j.procs.2015.05.257

Gugler, K., & Yurtoglu, B. B. (2004). The effects of mergers on company employment in the USA and Europe. International Journal of Industrial Organization, 22(4), 481-502. doi:10.1016/j.ijindorg.2003.12.003

Halkos, G. E., Matousek, R., & Tzeremes, N. G. (2014). Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks. Review of Quantitative Finance and Accounting, 46(1), 47-77. doi:10.1007/s11156-014-0461-5

Halkos, G. E., & Tzeremes, N. G. (2013). Estimating the degree of operating efficiency gains from a potential bank merger and acquisition: A DEA bootstrapped approach. Journal of Banking & Finance, 37(5), 1658-1668. doi:10.1016/j.jbankfin.2012.12.009

Hsu, C.-M. (2013). An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming. International Journal of Systems Science, 45(12), 2645-2664. doi:10.1080/00207721.2013.775388

Jain, V., Kumar, A., Kumar, S., & Chandra, C. (2015). Weight restrictions in Data Envelopment Analysis: A comprehensive Genetic Algorithm based approach for incorporating value judgments. Expert Systems with Applications, 42(3), 1503-1512. doi:10.1016/j.eswa.2014.09.034

Kao, H.-Y., Chan, C.-Y., & Wu, D.-J. (2014). A multi-objective programming method for solving network DEA. Applied Soft Computing, 24, 406-413. doi:10.1016/j.asoc.2014.06.057

Kohers, T., Huang, M., & Kohers, N. (2000). Market perception of efficiency in bank holding company mergers: the roles of the DEA and SFA models in capturing merger potential. Review of Financial Economics, 9(2), 101-120. doi:10.1016/s1058-3300(00)00019-7

Kuah, C. T., Wong, K. Y., & Wong, W. P. (2012). Monte Carlo Data Envelopment Analysis with Genetic Algorithm for Knowledge Management performance measurement. Expert Systems with Applications, 39(10), 9348-9358. doi:10.1016/j.eswa.2012.02.140

Kubo, K., & Saito, T. (2012). The effect of mergers on employment and wages: Evidence from Japan. Journal of the Japanese and International Economies, 26(2), 263-284. doi:10.1016/j.jjie.2011.04.001

Lin, R.-C., Sir, M. Y., & Pasupathy, K. S. (2013). Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services. Omega, 41(5), 881-892. doi:10.1016/j.omega.2012.11.003

Lozano, S., & Villa, G. (2010). DEA-based pre-merger planning tool. Journal of the Operational Research Society, 61(10), 1485-1497. doi:10.1057/jors.2009.106

Nazarko, J., & Šaparauskas, J. (2014). APPLICATION OF DEA METHOD IN EFFICIENCY EVALUATION OF PUBLIC HIGHER EDUCATION INSTITUTIONS. Technological and Economic Development of Economy, 20(1), 25-44. doi:10.3846/20294913.2014.837116

Pendharkar, P. C. (2002). A potential use of data envelopment analysis for the inverse classification problem. Omega, 30(3), 243-248. doi:10.1016/s0305-0483(02)00030-0

Pendharkar, P. C. (2017). A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation. Soft Computing, 22(22), 7315-7324. doi:10.1007/s00500-017-2605-8

Radojicic, M., Savic, G., & Jeremic, V. (2018). MEASURING THE EFFICIENCY OF BANKS: THE BOOTSTRAPPED I-DISTANCE GAR DEA APPROACH. Technological and Economic Development of Economy, 24(4), 1581-1605. doi:10.3846/tede.2018.3699

Toloo, M. (2014). An epsilon-free approach for finding the most efficient unit in DEA. Applied Mathematical Modelling, 38(13), 3182-3192. doi:10.1016/j.apm.2013.11.028

Toloo, M. (2014). The role of non-Archimedean epsilon in finding the most efficient unit: With an application of professional tennis players. Applied Mathematical Modelling, 38(21-22), 5334-5346. doi:10.1016/j.apm.2014.04.010

Toloo, M., & Mensah, E. K. (2019). Robust optimization with nonnegative decision variables: A DEA approach. Computers & Industrial Engineering, 127, 313-325. doi:10.1016/j.cie.2018.10.006

Tsolas, I. E., & Charles, V. (2015). Incorporating risk into bank efficiency: A satisficing DEA approach to assess the Greek banking crisis. Expert Systems with Applications, 42(7), 3491-3500. doi:10.1016/j.eswa.2014.12.033

Udhayakumar, A., Charles, V., & Kumar, M. (2011). Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems. Omega, 39(4), 387-397. doi:10.1016/j.omega.2010.09.002

Visbal-Cadavid, D., Martínez-Gómez, M., & Guijarro, F. (2017). Assessing the Efficiency of Public Universities through DEA. A Case Study. Sustainability, 9(8), 1416. doi:10.3390/su9081416

Wanke, P., & Barros, C. (2014). Two-stage DEA: An application to major Brazilian banks. Expert Systems with Applications, 41(5), 2337-2344. doi:10.1016/j.eswa.2013.09.031

Wei, Q., Zhang, J., & Zhang, X. (2000). An inverse DEA model for inputs/outputs estimate. European Journal of Operational Research, 121(1), 151-163. doi:10.1016/s0377-2217(99)00007-7

Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record