Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro, Francisco | es_ES |
dc.contributor.author | Martínez-Gómez, Mónica | es_ES |
dc.contributor.author | Visbal-Cadavid, Delimiro | es_ES |
dc.date.accessioned | 2021-05-25T03:32:50Z | |
dc.date.available | 2021-05-25T03:32:50Z | |
dc.date.issued | 2020-09-15 | es_ES |
dc.identifier.issn | 0957-4174 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166752 | |
dc.description.abstract | [EN] The aim of this study is to devise a sector restructuring model in which all the decision making units (DMUs) satisfy a predefined global efficiency level. The proposal makes several realistic assumptions regarding the merging of DMUs under specific circumstances. The model computes the global efficiency target by giving preference to merging DMUs over saving inputs, hence considering that the affected stakeholders may be resistant to restructuring, and this resistance may have overall negative effects on the image and reputation of the companies and organizations. In addition, the number of constituents in the new entities can be limited by the decision maker after the restructuring process, so that the model also considers a constraint on cardinality. The proposal combines the inverse data envelopment analysis (InvDEA), which computes the merger's input savings, and the genetic algorithm (GA), which solves the combinatorial problem of identifying the merging units. The proposal is illustrated by two examples from banking and higher education. (C) 2020 Elsevier Ltd. All rights reserved. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Expert Systems with Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mergers | es_ES |
dc.subject | Restructuring | es_ES |
dc.subject | Inverse data envelopment analysis | es_ES |
dc.subject | Genetic algorithm | es_ES |
dc.subject | Cardinality constraint | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | A model for sector restructuring through genetic algorithm and inverse DEA | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eswa.2020.113422 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Guijarro, F.; Martínez-Gómez, M.; Visbal-Cadavid, D. (2020). A model for sector restructuring through genetic algorithm and inverse DEA. Expert Systems with Applications. 154:1-13. https://doi.org/10.1016/j.eswa.2020.113422 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eswa.2020.113422 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 154 | es_ES |
dc.relation.pasarela | S\406612 | es_ES |
dc.description.references | Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data envelopment analysis. Economics of Education Review, 22(1), 89-97. doi:10.1016/s0272-7757(01)00068-1 | es_ES |
dc.description.references | Ahuja, R. K., & Orlin, J. B. (2001). Inverse Optimization. Operations Research, 49(5), 771-783. doi:10.1287/opre.49.5.771.10607 | es_ES |
dc.description.references | Amin, G. R., Al-Muharrami, S., & Toloo, M. (2019). A combined goal programming and inverse DEA method for target setting in mergers. Expert Systems with Applications, 115, 412-417. doi:10.1016/j.eswa.2018.08.018 | es_ES |
dc.description.references | Amin, G. R., Emrouznejad, A., & Gattoufi, S. (2017). Minor and major consolidations in inverse DEA: Definition and determination. Computers & Industrial Engineering, 103, 193-200. doi:10.1016/j.cie.2016.11.029 | es_ES |
dc.description.references | Amin, G. R., Emrouznejad, A., & Gattoufi, S. (2017). Modelling generalized firms’ restructuring using inverse DEA. Journal of Productivity Analysis, 48(1), 51-61. doi:10.1007/s11123-017-0501-y | es_ES |
dc.description.references | Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078 | es_ES |
dc.description.references | Beckmann, T., & Forbes, W. (2004). An Examination of Takeovers, Job Loss and the Wage Decline within UK Industry. European Financial Management, 10(1), 141-165. doi:10.1111/j.1468-036x.2004.00243.x | es_ES |
dc.description.references | Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8 | es_ES |
dc.description.references | Dentchev, N. A., & Heene, A. (2004). Managing the reputation of restructuring corporations: send the right signal to the right stakeholder. Journal of Public Affairs, 4(1), 56-72. doi:10.1002/pa.171 | es_ES |
dc.description.references | Emrouznejad, A., Yang, G., & Amin, G. R. (2018). A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries. Journal of the Operational Research Society, 70(7), 1079-1090. doi:10.1080/01605682.2018.1489344 | es_ES |
dc.description.references | Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2015). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Computing and Applications, 27(3), 707-725. doi:10.1007/s00521-015-1890-3 | es_ES |
dc.description.references | García, F., Guijarro, F., & Moya, I. (2010). Ranking Spanish savings banks: A multicriteria approach. Mathematical and Computer Modelling, 52(7-8), 1058-1065. doi:10.1016/j.mcm.2010.02.015 | es_ES |
dc.description.references | Gattoufi, S., Amin, G. R., & Emrouznejad, A. (2012). A new inverse DEA method for merging banks. IMA Journal of Management Mathematics, 25(1), 73-87. doi:10.1093/imaman/dps027 | es_ES |
dc.description.references | González, M., López-Espín, J. J., Aparicio, J., Giménez, D., & Pastor, J. T. (2015). Using Genetic Algorithms for Maximizing Technical Efficiency in Data Envelopment Analysis. Procedia Computer Science, 51, 374-383. doi:10.1016/j.procs.2015.05.257 | es_ES |
dc.description.references | Gugler, K., & Yurtoglu, B. B. (2004). The effects of mergers on company employment in the USA and Europe. International Journal of Industrial Organization, 22(4), 481-502. doi:10.1016/j.ijindorg.2003.12.003 | es_ES |
dc.description.references | Halkos, G. E., Matousek, R., & Tzeremes, N. G. (2014). Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks. Review of Quantitative Finance and Accounting, 46(1), 47-77. doi:10.1007/s11156-014-0461-5 | es_ES |
dc.description.references | Halkos, G. E., & Tzeremes, N. G. (2013). Estimating the degree of operating efficiency gains from a potential bank merger and acquisition: A DEA bootstrapped approach. Journal of Banking & Finance, 37(5), 1658-1668. doi:10.1016/j.jbankfin.2012.12.009 | es_ES |
dc.description.references | Hsu, C.-M. (2013). An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming. International Journal of Systems Science, 45(12), 2645-2664. doi:10.1080/00207721.2013.775388 | es_ES |
dc.description.references | Jain, V., Kumar, A., Kumar, S., & Chandra, C. (2015). Weight restrictions in Data Envelopment Analysis: A comprehensive Genetic Algorithm based approach for incorporating value judgments. Expert Systems with Applications, 42(3), 1503-1512. doi:10.1016/j.eswa.2014.09.034 | es_ES |
dc.description.references | Kao, H.-Y., Chan, C.-Y., & Wu, D.-J. (2014). A multi-objective programming method for solving network DEA. Applied Soft Computing, 24, 406-413. doi:10.1016/j.asoc.2014.06.057 | es_ES |
dc.description.references | Kohers, T., Huang, M., & Kohers, N. (2000). Market perception of efficiency in bank holding company mergers: the roles of the DEA and SFA models in capturing merger potential. Review of Financial Economics, 9(2), 101-120. doi:10.1016/s1058-3300(00)00019-7 | es_ES |
dc.description.references | Kuah, C. T., Wong, K. Y., & Wong, W. P. (2012). Monte Carlo Data Envelopment Analysis with Genetic Algorithm for Knowledge Management performance measurement. Expert Systems with Applications, 39(10), 9348-9358. doi:10.1016/j.eswa.2012.02.140 | es_ES |
dc.description.references | Kubo, K., & Saito, T. (2012). The effect of mergers on employment and wages: Evidence from Japan. Journal of the Japanese and International Economies, 26(2), 263-284. doi:10.1016/j.jjie.2011.04.001 | es_ES |
dc.description.references | Lin, R.-C., Sir, M. Y., & Pasupathy, K. S. (2013). Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services. Omega, 41(5), 881-892. doi:10.1016/j.omega.2012.11.003 | es_ES |
dc.description.references | Lozano, S., & Villa, G. (2010). DEA-based pre-merger planning tool. Journal of the Operational Research Society, 61(10), 1485-1497. doi:10.1057/jors.2009.106 | es_ES |
dc.description.references | Nazarko, J., & Šaparauskas, J. (2014). APPLICATION OF DEA METHOD IN EFFICIENCY EVALUATION OF PUBLIC HIGHER EDUCATION INSTITUTIONS. Technological and Economic Development of Economy, 20(1), 25-44. doi:10.3846/20294913.2014.837116 | es_ES |
dc.description.references | Pendharkar, P. C. (2002). A potential use of data envelopment analysis for the inverse classification problem. Omega, 30(3), 243-248. doi:10.1016/s0305-0483(02)00030-0 | es_ES |
dc.description.references | Pendharkar, P. C. (2017). A hybrid genetic algorithm and DEA approach for multi-criteria fixed cost allocation. Soft Computing, 22(22), 7315-7324. doi:10.1007/s00500-017-2605-8 | es_ES |
dc.description.references | Radojicic, M., Savic, G., & Jeremic, V. (2018). MEASURING THE EFFICIENCY OF BANKS: THE BOOTSTRAPPED I-DISTANCE GAR DEA APPROACH. Technological and Economic Development of Economy, 24(4), 1581-1605. doi:10.3846/tede.2018.3699 | es_ES |
dc.description.references | Toloo, M. (2014). An epsilon-free approach for finding the most efficient unit in DEA. Applied Mathematical Modelling, 38(13), 3182-3192. doi:10.1016/j.apm.2013.11.028 | es_ES |
dc.description.references | Toloo, M. (2014). The role of non-Archimedean epsilon in finding the most efficient unit: With an application of professional tennis players. Applied Mathematical Modelling, 38(21-22), 5334-5346. doi:10.1016/j.apm.2014.04.010 | es_ES |
dc.description.references | Toloo, M., & Mensah, E. K. (2019). Robust optimization with nonnegative decision variables: A DEA approach. Computers & Industrial Engineering, 127, 313-325. doi:10.1016/j.cie.2018.10.006 | es_ES |
dc.description.references | Tsolas, I. E., & Charles, V. (2015). Incorporating risk into bank efficiency: A satisficing DEA approach to assess the Greek banking crisis. Expert Systems with Applications, 42(7), 3491-3500. doi:10.1016/j.eswa.2014.12.033 | es_ES |
dc.description.references | Udhayakumar, A., Charles, V., & Kumar, M. (2011). Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems. Omega, 39(4), 387-397. doi:10.1016/j.omega.2010.09.002 | es_ES |
dc.description.references | Visbal-Cadavid, D., Martínez-Gómez, M., & Guijarro, F. (2017). Assessing the Efficiency of Public Universities through DEA. A Case Study. Sustainability, 9(8), 1416. doi:10.3390/su9081416 | es_ES |
dc.description.references | Wanke, P., & Barros, C. (2014). Two-stage DEA: An application to major Brazilian banks. Expert Systems with Applications, 41(5), 2337-2344. doi:10.1016/j.eswa.2013.09.031 | es_ES |
dc.description.references | Wei, Q., Zhang, J., & Zhang, X. (2000). An inverse DEA model for inputs/outputs estimate. European Journal of Operational Research, 121(1), 151-163. doi:10.1016/s0377-2217(99)00007-7 | es_ES |
dc.description.references | Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145 | es_ES |