- -

Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response

Mostrar el registro completo del ítem

Souana, K.; Taïbi, K.; Abderrahim, LA.; Amirat, M.; Achir, M.; Boussaid, M.; Mulet, JM. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae. 273:1-7. https://doi.org/10.1016/j.scienta.2020.109641

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166757

Ficheros en el ítem

Metadatos del ítem

Título: Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response
Autor: Souana, Kada Taïbi, Khaled Abderrahim, Leila Ait Amirat, Mokhtar Achir, Mohamed Boussaid, Mohamed Mulet, José Miguel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Selection and improvement of crops subjected to salinity constitutes an urgent need for increasing agricultural and food production in order to feed the growing human population. The aim of the present study is to ...[+]
Palabras clave: Salt tolerance , Salicylic acid , Vicia fabaL. , Water status , Gas exchanges , Photosynthesis , Ions homeostasis , Antioxidants enzymes
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Scientia Horticulturae. (issn: 0304-4238 )
DOI: 10.1016/j.scienta.2020.109641
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.scienta.2020.109641
Tipo: Artículo

References

Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018). Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russian Journal of Plant Physiology, 65(1), 104-114. doi:10.1134/s1021443718010132

Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106

Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. doi:10.1007/s11099-013-0021-6 [+]
Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018). Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russian Journal of Plant Physiology, 65(1), 104-114. doi:10.1134/s1021443718010132

Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106

Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. doi:10.1007/s11099-013-0021-6

Bulut, F., Akıncı, Ş., & Eroğlu, A. (2011). Growth and Uptake of Sodium and Potassium in Broad Bean (Vicia fabaL.) under Salinity Stress. Communications in Soil Science and Plant Analysis, 42(8), 945-961. doi:10.1080/00103624.2011.558963

Csiszár, J., Horváth, E., Váry, Z., Gallé, Á., Bela, K., Brunner, S., & Tari, I. (2014). Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 78, 15-26. doi:10.1016/j.plaphy.2014.02.010

DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017

El-Tayeb, M. A. (2005). Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regulation, 45(3), 215-224. doi:10.1007/s10725-005-4928-1

Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787

Hernández, J. A. (2019). Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10), 2408. doi:10.3390/ijms20102408

Herrera-Vásquez, A., Salinas, P., & Holuigue, L. (2015). Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00171

Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00080

Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. doi:10.1093/jxb/ert085

Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. doi:10.1016/j.plaphy.2014.03.026

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462

Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294. doi:10.1046/j.0016-8025.2001.00814.x

Li, L., Zhang, H., Zhang, L., Zhou, Y., Yang, R., Ding, C., & Wang, X. (2014). The physiological response of Artemisia annua L. to salt stress and salicylic acid treatment. Physiology and Molecular Biology of Plants, 20(2), 161-169. doi:10.1007/s12298-014-0228-4

Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), 1-9. doi:10.1016/s0168-9452(98)00025-9

Moussa, H. R., & Hassan, M. A. E.-F. (2015). Growth Enhancers to Mitigate Salinity Stress inVicia faba. International Journal of Vegetable Science, 22(3), 243-250. doi:10.1080/19315260.2015.1020585

Nazar, R., Umar, S., & Khan, N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3), e1003751. doi:10.1080/15592324.2014.1003751

Taïbi, K., Del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., López-Nicolás, J. M., & Mulet, J. M. (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1464-5

Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202

Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. doi:10.1016/j.sajb.2016.03.011

Wu, J., Seliskar, D. M., & Gallagher, J. L. (1998). Stress tolerance in the marsh plant Spartina patens : Impact of NaCl on growth and root plasma membrane lipid composition. Physiologia Plantarum, 102(2), 307-317. doi:10.1034/j.1399-3054.1998.1020219.x

Xu, E., & Brosché, M. (2014). Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biology, 14(1), 155. doi:10.1186/1471-2229-14-155

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem