Mostrar el registro sencillo del ítem
dc.contributor.author | Souana, Kada | es_ES |
dc.contributor.author | Taïbi, Khaled | es_ES |
dc.contributor.author | Abderrahim, Leila Ait | es_ES |
dc.contributor.author | Amirat, Mokhtar | es_ES |
dc.contributor.author | Achir, Mohamed | es_ES |
dc.contributor.author | Boussaid, Mohamed | es_ES |
dc.contributor.author | Mulet, José Miguel | es_ES |
dc.date.accessioned | 2021-05-25T03:33:10Z | |
dc.date.available | 2021-05-25T03:33:10Z | |
dc.date.issued | 2020-11-17 | es_ES |
dc.identifier.issn | 0304-4238 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166757 | |
dc.description.abstract | [EN] Selection and improvement of crops subjected to salinity constitutes an urgent need for increasing agricultural and food production in order to feed the growing human population. The aim of the present study is to evaluate the role of salicylic acid (SA) application in mitigating the adverse effects of salinity on faba bean (Vicia faba L.) at the physiological and molecular levels. Fort this purpose, two faba bean genotypes were subjected to various concentrations of NaCl and salicylic acid in a full factorial design. After that, growth, water status, gas exchanges, photosynthesis parameters, ions homeostasis and antioxidant enzymes activities were evaluated. The obtained results demonstrated that salinity induced several limitations in plants growth and physiological attributes. In response, salt stressed faba bean plants improved water status and enhanced antioxidant enzymatic activities. Remarkably, salt-tolerance of both genotypes was significantly improved by salicylic acid application which allowed the maintenance of cell membrane and photosynthetic process, restoring of ion homeostasis and the diminution of oxidative damages. Overall, the difference between genotypes is rather quantitative than qualitative even if the genotype Aguadulce displayed better growth, physiological and molecular response under salt stress than the genotype Histal. Besides, the beneficial effects of salicylic acid vary according to its concentration, the tested genotype and the studied parameter; the genotype Aguadulce performs better under the treatment with 0.5 mM SA while the genotype Histal manifests greater behaviour under the treatment with 1 mM SA. Therefore, salicylic acid can be considered as potential growth regulator to improve the salt response of faba bean. The application of salicylic acid would provide a practical basis for wide cultivation of faba bean in marginal and wastelands under-cultivated and might propose an effective ecological and economical alternative solution to deal with salt-affected soils mainly in arid regions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Scientia Horticulturae | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Salt tolerance | es_ES |
dc.subject | Salicylic acid | es_ES |
dc.subject | Vicia fabaL. | es_ES |
dc.subject | Water status | es_ES |
dc.subject | Gas exchanges | es_ES |
dc.subject | Photosynthesis | es_ES |
dc.subject | Ions homeostasis | es_ES |
dc.subject | Antioxidants enzymes | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.scienta.2020.109641 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Souana, K.; Taïbi, K.; Abderrahim, LA.; Amirat, M.; Achir, M.; Boussaid, M.; Mulet, JM. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae. 273:1-7. https://doi.org/10.1016/j.scienta.2020.109641 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.scienta.2020.109641 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 273 | es_ES |
dc.relation.pasarela | S\417220 | es_ES |
dc.description.references | Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018). Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russian Journal of Plant Physiology, 65(1), 104-114. doi:10.1134/s1021443718010132 | es_ES |
dc.description.references | Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 | es_ES |
dc.description.references | Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. doi:10.1007/s11099-013-0021-6 | es_ES |
dc.description.references | Bulut, F., Akıncı, Ş., & Eroğlu, A. (2011). Growth and Uptake of Sodium and Potassium in Broad Bean (Vicia fabaL.) under Salinity Stress. Communications in Soil Science and Plant Analysis, 42(8), 945-961. doi:10.1080/00103624.2011.558963 | es_ES |
dc.description.references | Csiszár, J., Horváth, E., Váry, Z., Gallé, Á., Bela, K., Brunner, S., & Tari, I. (2014). Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 78, 15-26. doi:10.1016/j.plaphy.2014.02.010 | es_ES |
dc.description.references | DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017 | es_ES |
dc.description.references | El-Tayeb, M. A. (2005). Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regulation, 45(3), 215-224. doi:10.1007/s10725-005-4928-1 | es_ES |
dc.description.references | Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787 | es_ES |
dc.description.references | Hernández, J. A. (2019). Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10), 2408. doi:10.3390/ijms20102408 | es_ES |
dc.description.references | Herrera-Vásquez, A., Salinas, P., & Holuigue, L. (2015). Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00171 | es_ES |
dc.description.references | Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00080 | es_ES |
dc.description.references | Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. doi:10.1093/jxb/ert085 | es_ES |
dc.description.references | Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. doi:10.1016/j.plaphy.2014.03.026 | es_ES |
dc.description.references | Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462 | es_ES |
dc.description.references | Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294. doi:10.1046/j.0016-8025.2001.00814.x | es_ES |
dc.description.references | Li, L., Zhang, H., Zhang, L., Zhou, Y., Yang, R., Ding, C., & Wang, X. (2014). The physiological response of Artemisia annua L. to salt stress and salicylic acid treatment. Physiology and Molecular Biology of Plants, 20(2), 161-169. doi:10.1007/s12298-014-0228-4 | es_ES |
dc.description.references | Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), 1-9. doi:10.1016/s0168-9452(98)00025-9 | es_ES |
dc.description.references | Moussa, H. R., & Hassan, M. A. E.-F. (2015). Growth Enhancers to Mitigate Salinity Stress inVicia faba. International Journal of Vegetable Science, 22(3), 243-250. doi:10.1080/19315260.2015.1020585 | es_ES |
dc.description.references | Nazar, R., Umar, S., & Khan, N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3), e1003751. doi:10.1080/15592324.2014.1003751 | es_ES |
dc.description.references | Taïbi, K., Del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., López-Nicolás, J. M., & Mulet, J. M. (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1464-5 | es_ES |
dc.description.references | Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202 | es_ES |
dc.description.references | Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. doi:10.1016/j.sajb.2016.03.011 | es_ES |
dc.description.references | Wu, J., Seliskar, D. M., & Gallagher, J. L. (1998). Stress tolerance in the marsh plant Spartina patens : Impact of NaCl on growth and root plasma membrane lipid composition. Physiologia Plantarum, 102(2), 307-317. doi:10.1034/j.1399-3054.1998.1020219.x | es_ES |
dc.description.references | Xu, E., & Brosché, M. (2014). Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biology, 14(1), 155. doi:10.1186/1471-2229-14-155 | es_ES |
dc.subject.ods | 10.- Reducir las desigualdades entre países y dentro de ellos | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |