- -

Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Souana, Kada es_ES
dc.contributor.author Taïbi, Khaled es_ES
dc.contributor.author Abderrahim, Leila Ait es_ES
dc.contributor.author Amirat, Mokhtar es_ES
dc.contributor.author Achir, Mohamed es_ES
dc.contributor.author Boussaid, Mohamed es_ES
dc.contributor.author Mulet, José Miguel es_ES
dc.date.accessioned 2021-05-25T03:33:10Z
dc.date.available 2021-05-25T03:33:10Z
dc.date.issued 2020-11-17 es_ES
dc.identifier.issn 0304-4238 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166757
dc.description.abstract [EN] Selection and improvement of crops subjected to salinity constitutes an urgent need for increasing agricultural and food production in order to feed the growing human population. The aim of the present study is to evaluate the role of salicylic acid (SA) application in mitigating the adverse effects of salinity on faba bean (Vicia faba L.) at the physiological and molecular levels. Fort this purpose, two faba bean genotypes were subjected to various concentrations of NaCl and salicylic acid in a full factorial design. After that, growth, water status, gas exchanges, photosynthesis parameters, ions homeostasis and antioxidant enzymes activities were evaluated. The obtained results demonstrated that salinity induced several limitations in plants growth and physiological attributes. In response, salt stressed faba bean plants improved water status and enhanced antioxidant enzymatic activities. Remarkably, salt-tolerance of both genotypes was significantly improved by salicylic acid application which allowed the maintenance of cell membrane and photosynthetic process, restoring of ion homeostasis and the diminution of oxidative damages. Overall, the difference between genotypes is rather quantitative than qualitative even if the genotype Aguadulce displayed better growth, physiological and molecular response under salt stress than the genotype Histal. Besides, the beneficial effects of salicylic acid vary according to its concentration, the tested genotype and the studied parameter; the genotype Aguadulce performs better under the treatment with 0.5 mM SA while the genotype Histal manifests greater behaviour under the treatment with 1 mM SA. Therefore, salicylic acid can be considered as potential growth regulator to improve the salt response of faba bean. The application of salicylic acid would provide a practical basis for wide cultivation of faba bean in marginal and wastelands under-cultivated and might propose an effective ecological and economical alternative solution to deal with salt-affected soils mainly in arid regions. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Scientia Horticulturae es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Salt tolerance es_ES
dc.subject Salicylic acid es_ES
dc.subject Vicia fabaL. es_ES
dc.subject Water status es_ES
dc.subject Gas exchanges es_ES
dc.subject Photosynthesis es_ES
dc.subject Ions homeostasis es_ES
dc.subject Antioxidants enzymes es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scienta.2020.109641 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Souana, K.; Taïbi, K.; Abderrahim, LA.; Amirat, M.; Achir, M.; Boussaid, M.; Mulet, JM. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae. 273:1-7. https://doi.org/10.1016/j.scienta.2020.109641 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scienta.2020.109641 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 273 es_ES
dc.relation.pasarela S\417220 es_ES
dc.description.references Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018). Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russian Journal of Plant Physiology, 65(1), 104-114. doi:10.1134/s1021443718010132 es_ES
dc.description.references Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 es_ES
dc.description.references Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. doi:10.1007/s11099-013-0021-6 es_ES
dc.description.references Bulut, F., Akıncı, Ş., & Eroğlu, A. (2011). Growth and Uptake of Sodium and Potassium in Broad Bean (Vicia fabaL.) under Salinity Stress. Communications in Soil Science and Plant Analysis, 42(8), 945-961. doi:10.1080/00103624.2011.558963 es_ES
dc.description.references Csiszár, J., Horváth, E., Váry, Z., Gallé, Á., Bela, K., Brunner, S., & Tari, I. (2014). Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiology and Biochemistry, 78, 15-26. doi:10.1016/j.plaphy.2014.02.010 es_ES
dc.description.references DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017 es_ES
dc.description.references El-Tayeb, M. A. (2005). Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regulation, 45(3), 215-224. doi:10.1007/s10725-005-4928-1 es_ES
dc.description.references Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01787 es_ES
dc.description.references Hernández, J. A. (2019). Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10), 2408. doi:10.3390/ijms20102408 es_ES
dc.description.references Herrera-Vásquez, A., Salinas, P., & Holuigue, L. (2015). Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00171 es_ES
dc.description.references Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00080 es_ES
dc.description.references Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. doi:10.1093/jxb/ert085 es_ES
dc.description.references Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. doi:10.1016/j.plaphy.2014.03.026 es_ES
dc.description.references Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462 es_ES
dc.description.references Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275-294. doi:10.1046/j.0016-8025.2001.00814.x es_ES
dc.description.references Li, L., Zhang, H., Zhang, L., Zhou, Y., Yang, R., Ding, C., & Wang, X. (2014). The physiological response of Artemisia annua L. to salt stress and salicylic acid treatment. Physiology and Molecular Biology of Plants, 20(2), 161-169. doi:10.1007/s12298-014-0228-4 es_ES
dc.description.references Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), 1-9. doi:10.1016/s0168-9452(98)00025-9 es_ES
dc.description.references Moussa, H. R., & Hassan, M. A. E.-F. (2015). Growth Enhancers to Mitigate Salinity Stress inVicia faba. International Journal of Vegetable Science, 22(3), 243-250. doi:10.1080/19315260.2015.1020585 es_ES
dc.description.references Nazar, R., Umar, S., & Khan, N. A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3), e1003751. doi:10.1080/15592324.2014.1003751 es_ES
dc.description.references Taïbi, K., Del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., López-Nicolás, J. M., & Mulet, J. M. (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1464-5 es_ES
dc.description.references Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202 es_ES
dc.description.references Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. doi:10.1016/j.sajb.2016.03.011 es_ES
dc.description.references Wu, J., Seliskar, D. M., & Gallagher, J. L. (1998). Stress tolerance in the marsh plant Spartina patens : Impact of NaCl on growth and root plasma membrane lipid composition. Physiologia Plantarum, 102(2), 307-317. doi:10.1034/j.1399-3054.1998.1020219.x es_ES
dc.description.references Xu, E., & Brosché, M. (2014). Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biology, 14(1), 155. doi:10.1186/1471-2229-14-155 es_ES
dc.subject.ods 10.- Reducir las desigualdades entre países y dentro de ellos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem