Fang, W., & Bartel, D. P. (2015). The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Molecular Cell, 60(1), 131-145. doi:10.1016/j.molcel.2015.08.015
Yu, Y., Jia, T., & Chen, X. (2017). The ‘how’ and ‘where’ of plant micro
RNA
s. New Phytologist, 216(4), 1002-1017. doi:10.1111/nph.14834
Zhang, C., Ng, D. W. ‐K., Lu, J., & Chen, Z. J. (2011). Roles of target site location and sequence complementarityin trans‐acting siRNA formation in Arabidopsis. The Plant Journal, 69(2), 217-226. doi:10.1111/j.1365-313x.2011.04783.x
[+]
Fang, W., & Bartel, D. P. (2015). The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Molecular Cell, 60(1), 131-145. doi:10.1016/j.molcel.2015.08.015
Yu, Y., Jia, T., & Chen, X. (2017). The ‘how’ and ‘where’ of plant micro
RNA
s. New Phytologist, 216(4), 1002-1017. doi:10.1111/nph.14834
Zhang, C., Ng, D. W. ‐K., Lu, J., & Chen, Z. J. (2011). Roles of target site location and sequence complementarityin trans‐acting siRNA formation in Arabidopsis. The Plant Journal, 69(2), 217-226. doi:10.1111/j.1365-313x.2011.04783.x
Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay
. The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972
Ameres, S. L., Martinez, J., & Schroeder, R. (2007). Molecular Basis for Target RNA Recognition and Cleavage by Human RISC. Cell, 130(1), 101-112. doi:10.1016/j.cell.2007.04.037
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., & Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nature Genetics, 39(10), 1278-1284. doi:10.1038/ng2135
Long, D., Lee, R., Williams, P., Chan, C. Y., Ambros, V., & Ding, Y. (2007). Potent effect of target structure on microRNA function. Nature Structural & Molecular Biology, 14(4), 287-294. doi:10.1038/nsmb1226
Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C., & Assmann, S. M. (2013). In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505(7485), 696-700. doi:10.1038/nature12756
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M., & Weissman, J. S. (2013). Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature, 505(7485), 701-705. doi:10.1038/nature12894
Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J.-W., … Chang, H. Y. (2015). Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519(7544), 486-490. doi:10.1038/nature14263
Wells, S. E., Hughes, J. M. ., Haller Igel, A., & Ares, M. (2000). [32] Use of dimethyl sulfate to probe RNA structure in vivo. RNA-Ligand Interactions Part B, 479-493. doi:10.1016/s0076-6879(00)18071-1
Merino, E. J., Wilkinson, K. A., Coughlan, J. L., & Weeks, K. M. (2005). RNA Structure Analysis at Single Nucleotide Resolution by Selective 2‘-Hydroxyl Acylation and Primer Extension (SHAPE). Journal of the American Chemical Society, 127(12), 4223-4231. doi:10.1021/ja043822v
Flynn, R. A., Zhang, Q. C., Spitale, R. C., Lee, B., Mumbach, M. R., & Chang, H. Y. (2016). Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nature Protocols, 11(2), 273-290. doi:10.1038/nprot.2016.011
Talkish, J., May, G., Lin, Y., Woolford, J. L., & McManus, C. J. (2014). Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA, 20(5), 713-720. doi:10.1261/rna.042218.113
Zubradt, M., Gupta, P., Persad, S., Lambowitz, A. M., Weissman, J. S., & Rouskin, S. (2016). DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nature Methods, 14(1), 75-82. doi:10.1038/nmeth.4057
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E., & Weeks, K. M. (2014). RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nature Methods, 11(9), 959-965. doi:10.1038/nmeth.3029
Souret, F. F., Kastenmayer, J. P., & Green, P. J. (2004). AtXRN4 Degrades mRNA in Arabidopsis and Its Substrates Include Selected miRNA Targets. Molecular Cell, 15(2), 173-183. doi:10.1016/j.molcel.2004.06.006
German, M. A., Pillay, M., Jeong, D.-H., Hetawal, A., Luo, S., Janardhanan, P., … Green, P. J. (2008). Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology, 26(8), 941-946. doi:10.1038/nbt1417
Spitale, R. C., Crisalli, P., Flynn, R. A., Torre, E. A., Kool, E. T., & Chang, H. Y. (2012). RNA SHAPE analysis in living cells. Nature Chemical Biology, 9(1), 18-20. doi:10.1038/nchembio.1131
Pelechano, V., Wei, W., & Steinmetz, L. M. (2016). Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nature Protocols, 11(2), 359-376. doi:10.1038/nprot.2016.026
Deigan, K. E., Li, T. W., Mathews, D. H., & Weeks, K. M. (2008). Accurate SHAPE-directed RNA structure determination. Proceedings of the National Academy of Sciences, 106(1), 97-102. doi:10.1073/pnas.0806929106
Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., & Axtell, M. J. (2008). Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome. Current Biology, 18(10), 758-762. doi:10.1016/j.cub.2008.04.042
Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25
Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., … Carrington, J. C. (2007). High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. PLoS ONE, 2(2), e219. doi:10.1371/journal.pone.0000219
Srivastava, P. K., Moturu, T. R., Pandey, P., Baldwin, I. T., & Pandey, S. P. (2014). A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics, 15(1). doi:10.1186/1471-2164-15-348
Dimitrov, R. (2014). microRNA Gene Finding and Target Prediction - Basic Principles and Challenges. MOJ Proteomics & Bioinformatics, 1(4). doi:10.15406/mojpb.2014.01.00024
Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T., & Patel, D. J. (2008). Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 456(7224), 921-926. doi:10.1038/nature07666
Sheng, G., Zhao, H., Wang, J., Rao, Y., Tian, W., Swarts, D. C., … Wang, Y. (2013). Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proceedings of the National Academy of Sciences, 111(2), 652-657. doi:10.1073/pnas.1321032111
Schirle, N. T., & MacRae, I. J. (2012). The Crystal Structure of Human Argonaute2. Science, 336(6084), 1037-1040. doi:10.1126/science.1221551
Nakanishi, K., Weinberg, D. E., Bartel, D. P., & Patel, D. J. (2012). Structure of yeast Argonaute with guide RNA. Nature, 486(7403), 368-374. doi:10.1038/nature11211
Rosta, E., Nowotny, M., Yang, W., & Hummer, G. (2011). Catalytic Mechanism of RNA Backbone Cleavage by Ribonuclease H from Quantum Mechanics/Molecular Mechanics Simulations. Journal of the American Chemical Society, 133(23), 8934-8941. doi:10.1021/ja200173a
Wu, F.-H., Shen, S.-C., Lee, L.-Y., Lee, S.-H., Chan, M.-T., & Lin, C.-S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods, 5(1). doi:10.1186/1746-4811-5-16
Kwok, C. K., Ding, Y., Tang, Y., Assmann, S. M., & Bevilacqua, P. C. (2013). Determination of in vivo RNA structure in low-abundance transcripts. Nature Communications, 4(1). doi:10.1038/ncomms3971
McGraw, R. A. (1984). Dideoxy DNA sequencing with end-labeled oligonucleotide primers. Analytical Biochemistry, 143(2), 298-303. doi:10.1016/0003-2697(84)90666-3
Karabiber, F., McGinnis, J. L., Favorov, O. V., & Weeks, K. M. (2012). QuShape: Rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA, 19(1), 63-73. doi:10.1261/rna.036327.112
Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 12. doi:10.1186/1746-4811-3-12
Ding, Y., Kwok, C. K., Tang, Y., Bevilacqua, P. C., & Assmann, S. M. (2015). Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nature Protocols, 10(7), 1050-1066. doi:10.1038/nprot.2015.064
Studer, S. M., & Joseph, S. (2006). Unfolding of mRNA Secondary Structure by the Bacterial Translation Initiation Complex. Molecular Cell, 22(1), 105-115. doi:10.1016/j.molcel.2006.02.014
Burkhardt, D. H., Rouskin, S., Zhang, Y., Li, G.-W., Weissman, J. S., & Gross, C. A. (2017). Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. eLife, 6. doi:10.7554/elife.22037
Wan, Y., Qu, K., Zhang, Q. C., Flynn, R. A., Manor, O., Ouyang, Z., … Chang, H. Y. (2014). Landscape and variation of RNA secondary structure across the human transcriptome. Nature, 505(7485), 706-709. doi:10.1038/nature12946
Smola, M. J., & Weeks, K. M. (2018). In-cell RNA structure probing with SHAPE-MaP. Nature Protocols, 13(6), 1181-1195. doi:10.1038/nprot.2018.010
Jackowiak, P., Nowacka, M., Strozycki, P. M., & Figlerowicz, M. (2011). RNA degradome--its biogenesis and functions. Nucleic Acids Research, 39(17), 7361-7370. doi:10.1093/nar/gkr450
Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238
Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., … Chen, X. (2013). MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in Arabidopsis. Cell, 153(3), 562-574. doi:10.1016/j.cell.2013.04.005
Chen, X. (2004). A MicroRNA as a Translational Repressor of
APETALA2
in
Arabidopsis
Flower Development. Science, 303(5666), 2022-2025. doi:10.1126/science.1088060
Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018
Yoshikawa, M. (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes & Development, 19(18), 2164-2175. doi:10.1101/gad.1352605
McGinnis, J. L., Dunkle, J. A., Cate, J. H. D., & Weeks, K. M. (2012). The Mechanisms of RNA SHAPE Chemistry. Journal of the American Chemical Society, 134(15), 6617-6624. doi:10.1021/ja2104075
Bisaria, N., Jarmoskaite, I., & Herschlag, D. (2017). Lessons from Enzyme Kinetics Reveal Specificity Principles for RNA-Guided Nucleases in RNA Interference and CRISPR-Based Genome Editing. Cell Systems, 4(1), 21-29. doi:10.1016/j.cels.2016.12.010
Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants
. The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945
Lorenz, R., Hofacker, I. L., & Stadler, P. F. (2016). RNA folding with hard and soft constraints. Algorithms for Molecular Biology, 11(1). doi:10.1186/s13015-016-0070-z
Li, F., Zheng, Q., Vandivier, L. E., Willmann, M. R., Chen, Y., & Gregory, B. D. (2012). Regulatory Impact of RNA Secondary Structure across the Arabidopsis Transcriptome. The Plant Cell, 24(11), 4346-4359. doi:10.1105/tpc.112.104232
Dolata, J., Taube, M., Bajczyk, M., Jarmolowski, A., Szweykowska-Kulinska, Z., & Bielewicz, D. (2018). Regulation of Plant Microprocessor Function in Shaping microRNA Landscape. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00753
Ji, L., & Chen, X. (2012). Regulation of small RNA stability: methylation and beyond. Cell Research, 22(4), 624-636. doi:10.1038/cr.2012.36
Muqbil, I., Bao, B., Abou-Samra, A., Mohammad, R., & Azmi, A. (2013). Nuclear Export Mediated Regulation of MicroRNAs: Potential Target for Drug Intervention. Current Drug Targets, 14(10), 1094-1100. doi:10.2174/1389450111314100002
Li, S., Le, B., Ma, X., Li, S., You, C., Yu, Y., … Chen, X. (2016). Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife, 5. doi:10.7554/elife.22750
Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507(7490), 62-67. doi:10.1038/nature13011
O’Connell, M. R., Oakes, B. L., Sternberg, S. H., East-Seletsky, A., Kaplan, M., & Doudna, J. A. (2014). Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature, 516(7530), 263-266. doi:10.1038/nature13769
Tambe, A., East-Seletsky, A., Knott, G. J., Doudna, J. A., & O’Connell, M. R. (2018). RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Cell Reports, 24(4), 1025-1036. doi:10.1016/j.celrep.2018.06.105
Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A., & Yildiz, A. (2017). A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances, 3(8). doi:10.1126/sciadv.aao0027
Chen, J. S., & Doudna, J. A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 1(10). doi:10.1038/s41570-017-0078
Meister, G. (2013). Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 14(7), 447-459. doi:10.1038/nrg3462
Hentze, M. W., Castello, A., Schwarzl, T., & Preiss, T. (2018). A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 19(5), 327-341. doi:10.1038/nrm.2017.130
Zuber, J., Cabral, B. J., McFadyen, I., Mauger, D. M., & Mathews, D. H. (2018). Analysis of RNA nearest neighbor parameters reveals interdependencies and quantifies the uncertainty in RNA secondary structure prediction. RNA, 24(11), 1568-1582. doi:10.1261/rna.065102.117
[-]