- -

Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions

Mostrar el registro completo del ítem

Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Carvallo-Garcia, C. (2020). Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions. Process Safety and Environmental Protection. 141:110-122. https://doi.org/10.1016/j.psep.2020.04.022

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166818

Ficheros en el ítem

Metadatos del ítem

Título: Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions
Autor: Payri, Raul Gimeno, Jaime Marti-Aldaravi, Pedro Carvallo-Garcia, Cesar
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Nearly all active fire extinguishing systems consist of injecting an agent into the space set on fire. For aircraft cargo cabins, the agent widely used up to date is Halon 1301. The FAA provides a level of safety for ...[+]
Palabras clave: Fire suppression agent , Spray , Penetration , Spreading angle , Spatial distribution
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Process Safety and Environmental Protection. (issn: 0957-5820 )
DOI: 10.1016/j.psep.2020.04.022
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.psep.2020.04.022
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/785549/EU/MULTI-PHYSICS METHODOLOGY FOR PHASE CHANGE DUE TO RAPIDLY DEPRESSURISED TWO-PHASE FLOWS/
Agradecimientos:
This research was performed in the frame of the project "Multi -physics methodology for phase change due to rapidly depressurized two-phase flows" reference 785549 from Clean Sky Joint Undertaking. The authors would also ...[+]
Tipo: Artículo

References

Aleiferis, P. G., & van Romunde, Z. R. (2013). An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions. Fuel, 105, 143-168. doi:10.1016/j.fuel.2012.07.044

Amini, G. (2016). Liquid flow in a simplex swirl nozzle. International Journal of Multiphase Flow, 79, 225-235. doi:10.1016/j.ijmultiphaseflow.2015.09.004

Chiu, C.-W., & Li, Y.-H. (2015). Full-scale experimental and numerical analysis of water mist system for sheltered fire sources in wind generator compartment. Process Safety and Environmental Protection, 98, 40-49. doi:10.1016/j.psep.2015.05.011 [+]
Aleiferis, P. G., & van Romunde, Z. R. (2013). An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions. Fuel, 105, 143-168. doi:10.1016/j.fuel.2012.07.044

Amini, G. (2016). Liquid flow in a simplex swirl nozzle. International Journal of Multiphase Flow, 79, 225-235. doi:10.1016/j.ijmultiphaseflow.2015.09.004

Chiu, C.-W., & Li, Y.-H. (2015). Full-scale experimental and numerical analysis of water mist system for sheltered fire sources in wind generator compartment. Process Safety and Environmental Protection, 98, 40-49. doi:10.1016/j.psep.2015.05.011

Gann, R. G. (1998). Fire Technology, 34(4), 363-371. doi:10.1023/a:1015370628661

Genzale, C. L., Reitz, R. D., & Musculus, M. P. B. (2009). Effects of spray targeting on mixture development and emissions formation in late-injection low-temperature heavy-duty diesel combustion. Proceedings of the Combustion Institute, 32(2), 2767-2774. doi:10.1016/j.proci.2008.06.072

Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030

Grosshandler, W., Presser, C., Lowe, D., & Rinkinen, W. (1995). Assessing Halon Alternatives for Aircraft Engine Nacelle Fire Suppression. Journal of Heat Transfer, 117(2), 489-494. doi:10.1115/1.2822548

Kim, S. C., & Ryou, H. S. (2003). An experimental and numerical study on fire suppression using a water mist in an enclosure. Building and Environment, 38(11), 1309-1316. doi:10.1016/s0360-1323(03)00134-3

Liang, T., Liu, M., Liu, Z., Zhong, W., Xiao, X., & Lo, S. (2015). A study of the probability distribution of pool fire extinguishing times using water mist. Process Safety and Environmental Protection, 93, 240-248. doi:10.1016/j.psep.2014.05.009

McLinden, M. O., Perkins, R. A., Lemmon, E. W., & Fortin, T. J. (2015). Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and an Equation of State. Journal of Chemical & Engineering Data, 60(12), 3646-3659. doi:10.1021/acs.jced.5b00623

Modak, A. U., Abbud-Madrid, A., Delplanque, J.-P., & Kee, R. J. (2006). The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames. Combustion and Flame, 144(1-2), 103-111. doi:10.1016/j.combustflame.2005.07.003

NDUBIZU, C. C., ANANTH, R., & TATEM, P. A. (2000). The Effects of Droplet Size and Injection Orientation on Water Mist Suppression of Low and High Boiling Point Liquid Pool Fires. Combustion Science and Technology, 157(1), 63-86. doi:10.1080/00102200008947310

Pagliaro, J. L., & Linteris, G. T. (2017). Hydrocarbon flame inhibition by C6F12O (Novec 1230): Unstretched burning velocity measurements and predictions. Fire Safety Journal, 87, 10-17. doi:10.1016/j.firesaf.2016.11.002

Payri, R., García-Oliver, J. M., Bardi, M., & Manin, J. (2012). Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering, 35, 185-195. doi:10.1016/j.applthermaleng.2011.10.027

Payri, R., Salvador, F. J., Bracho, G., & Viera, A. (2017). Differences between single and double-pass schlieren imaging on diesel vapor spray characteristics. Applied Thermal Engineering, 125, 220-231. doi:10.1016/j.applthermaleng.2017.06.140

Prasad, K., Li, C., & Kailasanath, K. (1999). Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Safety Journal, 33(3), 185-212. doi:10.1016/s0379-7112(99)00028-4

Reitz, R. D. (1982). Mechanism of atomization of a liquid jet. Physics of Fluids, 25(10), 1730. doi:10.1063/1.863650

Yang, P., Liu, T., & Qin, X. (2010). Experimental and numerical study on water mist suppression system on room fire. Building and Environment, 45(10), 2309-2316. doi:10.1016/j.buildenv.2010.04.017

Yinshui, L., Zhuo, J., Dan, W., & Xiaohui, L. (2014). Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles. Experimental Thermal and Fluid Science, 52, 174-181. doi:10.1016/j.expthermflusci.2013.09.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem