Mostrar el registro sencillo del ítem
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | Gimeno, Jaime | es_ES |
dc.contributor.author | Marti-Aldaravi, Pedro | es_ES |
dc.contributor.author | Carvallo-Garcia, Cesar | es_ES |
dc.date.accessioned | 2021-05-27T03:32:55Z | |
dc.date.available | 2021-05-27T03:32:55Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0957-5820 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166818 | |
dc.description.abstract | [EN] Nearly all active fire extinguishing systems consist of injecting an agent into the space set on fire. For aircraft cargo cabins, the agent widely used up to date is Halon 1301. The FAA provides a level of safety for this fire suppression agent that needs to be used in a volumetric concentration of 6% and needs to be acting for a duration of 0.5 s. On the other hand, Halon 1301 is known to contribute to the retrenchment of Earth's atmospheric ozone layer, therefore it is going to be prohibited in the incoming years. The FAA has defined an equivalent level of safety in terms of the performance of the alternative agents. In this research, two different alternative fire suppression agents and two nozzles were tested at two vessel back-pressure conditions using a new design in purpose facility and an injection system able to control the injection pressure and the injection duration (the agent injected mass) in order to satisfy the FAA performance conditions. The discharge volume is a rectangular constant volume constant pressure vessel of approximately 0.85 m(3) and 1.5 m of length that is provided with two transparent windows of 0.75 m x 1.5 m to ensure an optical access to study the whole agent injection and it mixing process. Liquid phase distribution of the agent injected inside the vessel is measured by means of Diffuse Back-Light Illumination (DBI) technique. Vapor phase distribution, when present, is measured through the single-pass Schlieren technique. Results show a poor performance in terms of spatial distribution (narrow jet with little atomization) of the two alternative agents injected through the nozzle actually used in the aircraft cargo cabin fire suppression systems. However, simply replacing the nozzle and using one with a swirler showed excellent performance in terms of spray penetration and spreading angle. This results ratify that the nozzles of the fire extinguisher system currently used in the aircraft cargo cabin does not work for the alternative agents tested. | es_ES |
dc.description.sponsorship | This research was performed in the frame of the project "Multi -physics methodology for phase change due to rapidly depressurized two-phase flows" reference 785549 from Clean Sky Joint Undertaking. The authors would also like to thankJose Enrique Del Rey for his help and participation in the test rig assembly as a lab technician. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Process Safety and Environmental Protection | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fire suppression agent | es_ES |
dc.subject | Spray | es_ES |
dc.subject | Penetration | es_ES |
dc.subject | Spreading angle | es_ES |
dc.subject | Spatial distribution | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.psep.2020.04.022 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/785549/EU/MULTI-PHYSICS METHODOLOGY FOR PHASE CHANGE DUE TO RAPIDLY DEPRESSURISED TWO-PHASE FLOWS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Carvallo-Garcia, C. (2020). Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions. Process Safety and Environmental Protection. 141:110-122. https://doi.org/10.1016/j.psep.2020.04.022 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.psep.2020.04.022 | es_ES |
dc.description.upvformatpinicio | 110 | es_ES |
dc.description.upvformatpfin | 122 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 141 | es_ES |
dc.relation.pasarela | S\412877 | es_ES |
dc.contributor.funder | Clean Sky Joint Undertaking | es_ES |
dc.description.references | Aleiferis, P. G., & van Romunde, Z. R. (2013). An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions. Fuel, 105, 143-168. doi:10.1016/j.fuel.2012.07.044 | es_ES |
dc.description.references | Amini, G. (2016). Liquid flow in a simplex swirl nozzle. International Journal of Multiphase Flow, 79, 225-235. doi:10.1016/j.ijmultiphaseflow.2015.09.004 | es_ES |
dc.description.references | Chiu, C.-W., & Li, Y.-H. (2015). Full-scale experimental and numerical analysis of water mist system for sheltered fire sources in wind generator compartment. Process Safety and Environmental Protection, 98, 40-49. doi:10.1016/j.psep.2015.05.011 | es_ES |
dc.description.references | Gann, R. G. (1998). Fire Technology, 34(4), 363-371. doi:10.1023/a:1015370628661 | es_ES |
dc.description.references | Genzale, C. L., Reitz, R. D., & Musculus, M. P. B. (2009). Effects of spray targeting on mixture development and emissions formation in late-injection low-temperature heavy-duty diesel combustion. Proceedings of the Combustion Institute, 32(2), 2767-2774. doi:10.1016/j.proci.2008.06.072 | es_ES |
dc.description.references | Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030 | es_ES |
dc.description.references | Grosshandler, W., Presser, C., Lowe, D., & Rinkinen, W. (1995). Assessing Halon Alternatives for Aircraft Engine Nacelle Fire Suppression. Journal of Heat Transfer, 117(2), 489-494. doi:10.1115/1.2822548 | es_ES |
dc.description.references | Kim, S. C., & Ryou, H. S. (2003). An experimental and numerical study on fire suppression using a water mist in an enclosure. Building and Environment, 38(11), 1309-1316. doi:10.1016/s0360-1323(03)00134-3 | es_ES |
dc.description.references | Liang, T., Liu, M., Liu, Z., Zhong, W., Xiao, X., & Lo, S. (2015). A study of the probability distribution of pool fire extinguishing times using water mist. Process Safety and Environmental Protection, 93, 240-248. doi:10.1016/j.psep.2014.05.009 | es_ES |
dc.description.references | McLinden, M. O., Perkins, R. A., Lemmon, E. W., & Fortin, T. J. (2015). Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and an Equation of State. Journal of Chemical & Engineering Data, 60(12), 3646-3659. doi:10.1021/acs.jced.5b00623 | es_ES |
dc.description.references | Modak, A. U., Abbud-Madrid, A., Delplanque, J.-P., & Kee, R. J. (2006). The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames. Combustion and Flame, 144(1-2), 103-111. doi:10.1016/j.combustflame.2005.07.003 | es_ES |
dc.description.references | NDUBIZU, C. C., ANANTH, R., & TATEM, P. A. (2000). The Effects of Droplet Size and Injection Orientation on Water Mist Suppression of Low and High Boiling Point Liquid Pool Fires. Combustion Science and Technology, 157(1), 63-86. doi:10.1080/00102200008947310 | es_ES |
dc.description.references | Pagliaro, J. L., & Linteris, G. T. (2017). Hydrocarbon flame inhibition by C6F12O (Novec 1230): Unstretched burning velocity measurements and predictions. Fire Safety Journal, 87, 10-17. doi:10.1016/j.firesaf.2016.11.002 | es_ES |
dc.description.references | Payri, R., García-Oliver, J. M., Bardi, M., & Manin, J. (2012). Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering, 35, 185-195. doi:10.1016/j.applthermaleng.2011.10.027 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Bracho, G., & Viera, A. (2017). Differences between single and double-pass schlieren imaging on diesel vapor spray characteristics. Applied Thermal Engineering, 125, 220-231. doi:10.1016/j.applthermaleng.2017.06.140 | es_ES |
dc.description.references | Prasad, K., Li, C., & Kailasanath, K. (1999). Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Safety Journal, 33(3), 185-212. doi:10.1016/s0379-7112(99)00028-4 | es_ES |
dc.description.references | Reitz, R. D. (1982). Mechanism of atomization of a liquid jet. Physics of Fluids, 25(10), 1730. doi:10.1063/1.863650 | es_ES |
dc.description.references | Yang, P., Liu, T., & Qin, X. (2010). Experimental and numerical study on water mist suppression system on room fire. Building and Environment, 45(10), 2309-2316. doi:10.1016/j.buildenv.2010.04.017 | es_ES |
dc.description.references | Yinshui, L., Zhuo, J., Dan, W., & Xiaohui, L. (2014). Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles. Experimental Thermal and Fluid Science, 52, 174-181. doi:10.1016/j.expthermflusci.2013.09.008 | es_ES |