- -

Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Gimeno, Jaime es_ES
dc.contributor.author Marti-Aldaravi, Pedro es_ES
dc.contributor.author Carvallo-Garcia, Cesar es_ES
dc.date.accessioned 2021-05-27T03:32:55Z
dc.date.available 2021-05-27T03:32:55Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0957-5820 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166818
dc.description.abstract [EN] Nearly all active fire extinguishing systems consist of injecting an agent into the space set on fire. For aircraft cargo cabins, the agent widely used up to date is Halon 1301. The FAA provides a level of safety for this fire suppression agent that needs to be used in a volumetric concentration of 6% and needs to be acting for a duration of 0.5 s. On the other hand, Halon 1301 is known to contribute to the retrenchment of Earth's atmospheric ozone layer, therefore it is going to be prohibited in the incoming years. The FAA has defined an equivalent level of safety in terms of the performance of the alternative agents. In this research, two different alternative fire suppression agents and two nozzles were tested at two vessel back-pressure conditions using a new design in purpose facility and an injection system able to control the injection pressure and the injection duration (the agent injected mass) in order to satisfy the FAA performance conditions. The discharge volume is a rectangular constant volume constant pressure vessel of approximately 0.85 m(3) and 1.5 m of length that is provided with two transparent windows of 0.75 m x 1.5 m to ensure an optical access to study the whole agent injection and it mixing process. Liquid phase distribution of the agent injected inside the vessel is measured by means of Diffuse Back-Light Illumination (DBI) technique. Vapor phase distribution, when present, is measured through the single-pass Schlieren technique. Results show a poor performance in terms of spatial distribution (narrow jet with little atomization) of the two alternative agents injected through the nozzle actually used in the aircraft cargo cabin fire suppression systems. However, simply replacing the nozzle and using one with a swirler showed excellent performance in terms of spray penetration and spreading angle. This results ratify that the nozzles of the fire extinguisher system currently used in the aircraft cargo cabin does not work for the alternative agents tested. es_ES
dc.description.sponsorship This research was performed in the frame of the project "Multi -physics methodology for phase change due to rapidly depressurized two-phase flows" reference 785549 from Clean Sky Joint Undertaking. The authors would also like to thankJose Enrique Del Rey for his help and participation in the test rig assembly as a lab technician. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Process Safety and Environmental Protection es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fire suppression agent es_ES
dc.subject Spray es_ES
dc.subject Penetration es_ES
dc.subject Spreading angle es_ES
dc.subject Spatial distribution es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.psep.2020.04.022 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/785549/EU/MULTI-PHYSICS METHODOLOGY FOR PHASE CHANGE DUE TO RAPIDLY DEPRESSURISED TWO-PHASE FLOWS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Carvallo-Garcia, C. (2020). Parametrical study of the dispersion of an alternative fire suppression agent through a real-size extinguisher system nozzle under realistic aircraft cargo cabin conditions. Process Safety and Environmental Protection. 141:110-122. https://doi.org/10.1016/j.psep.2020.04.022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.psep.2020.04.022 es_ES
dc.description.upvformatpinicio 110 es_ES
dc.description.upvformatpfin 122 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 141 es_ES
dc.relation.pasarela S\412877 es_ES
dc.contributor.funder Clean Sky Joint Undertaking es_ES
dc.description.references Aleiferis, P. G., & van Romunde, Z. R. (2013). An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions. Fuel, 105, 143-168. doi:10.1016/j.fuel.2012.07.044 es_ES
dc.description.references Amini, G. (2016). Liquid flow in a simplex swirl nozzle. International Journal of Multiphase Flow, 79, 225-235. doi:10.1016/j.ijmultiphaseflow.2015.09.004 es_ES
dc.description.references Chiu, C.-W., & Li, Y.-H. (2015). Full-scale experimental and numerical analysis of water mist system for sheltered fire sources in wind generator compartment. Process Safety and Environmental Protection, 98, 40-49. doi:10.1016/j.psep.2015.05.011 es_ES
dc.description.references Gann, R. G. (1998). Fire Technology, 34(4), 363-371. doi:10.1023/a:1015370628661 es_ES
dc.description.references Genzale, C. L., Reitz, R. D., & Musculus, M. P. B. (2009). Effects of spray targeting on mixture development and emissions formation in late-injection low-temperature heavy-duty diesel combustion. Proceedings of the Combustion Institute, 32(2), 2767-2774. doi:10.1016/j.proci.2008.06.072 es_ES
dc.description.references Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030 es_ES
dc.description.references Grosshandler, W., Presser, C., Lowe, D., & Rinkinen, W. (1995). Assessing Halon Alternatives for Aircraft Engine Nacelle Fire Suppression. Journal of Heat Transfer, 117(2), 489-494. doi:10.1115/1.2822548 es_ES
dc.description.references Kim, S. C., & Ryou, H. S. (2003). An experimental and numerical study on fire suppression using a water mist in an enclosure. Building and Environment, 38(11), 1309-1316. doi:10.1016/s0360-1323(03)00134-3 es_ES
dc.description.references Liang, T., Liu, M., Liu, Z., Zhong, W., Xiao, X., & Lo, S. (2015). A study of the probability distribution of pool fire extinguishing times using water mist. Process Safety and Environmental Protection, 93, 240-248. doi:10.1016/j.psep.2014.05.009 es_ES
dc.description.references McLinden, M. O., Perkins, R. A., Lemmon, E. W., & Fortin, T. J. (2015). Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and an Equation of State. Journal of Chemical & Engineering Data, 60(12), 3646-3659. doi:10.1021/acs.jced.5b00623 es_ES
dc.description.references Modak, A. U., Abbud-Madrid, A., Delplanque, J.-P., & Kee, R. J. (2006). The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames. Combustion and Flame, 144(1-2), 103-111. doi:10.1016/j.combustflame.2005.07.003 es_ES
dc.description.references NDUBIZU, C. C., ANANTH, R., & TATEM, P. A. (2000). The Effects of Droplet Size and Injection Orientation on Water Mist Suppression of Low and High Boiling Point Liquid Pool Fires. Combustion Science and Technology, 157(1), 63-86. doi:10.1080/00102200008947310 es_ES
dc.description.references Pagliaro, J. L., & Linteris, G. T. (2017). Hydrocarbon flame inhibition by C6F12O (Novec 1230): Unstretched burning velocity measurements and predictions. Fire Safety Journal, 87, 10-17. doi:10.1016/j.firesaf.2016.11.002 es_ES
dc.description.references Payri, R., García-Oliver, J. M., Bardi, M., & Manin, J. (2012). Fuel temperature influence on diesel sprays in inert and reacting conditions. Applied Thermal Engineering, 35, 185-195. doi:10.1016/j.applthermaleng.2011.10.027 es_ES
dc.description.references Payri, R., Salvador, F. J., Bracho, G., & Viera, A. (2017). Differences between single and double-pass schlieren imaging on diesel vapor spray characteristics. Applied Thermal Engineering, 125, 220-231. doi:10.1016/j.applthermaleng.2017.06.140 es_ES
dc.description.references Prasad, K., Li, C., & Kailasanath, K. (1999). Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Safety Journal, 33(3), 185-212. doi:10.1016/s0379-7112(99)00028-4 es_ES
dc.description.references Reitz, R. D. (1982). Mechanism of atomization of a liquid jet. Physics of Fluids, 25(10), 1730. doi:10.1063/1.863650 es_ES
dc.description.references Yang, P., Liu, T., & Qin, X. (2010). Experimental and numerical study on water mist suppression system on room fire. Building and Environment, 45(10), 2309-2316. doi:10.1016/j.buildenv.2010.04.017 es_ES
dc.description.references Yinshui, L., Zhuo, J., Dan, W., & Xiaohui, L. (2014). Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles. Experimental Thermal and Fluid Science, 52, 174-181. doi:10.1016/j.expthermflusci.2013.09.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem