Mostrar el registro sencillo del ítem
dc.contributor.author | Giner-Sanz, Juan José | es_ES |
dc.contributor.author | Leverick, G.M. | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.contributor.author | Shao-Horn, Y. | es_ES |
dc.date.accessioned | 2021-05-27T03:33:26Z | |
dc.date.available | 2021-05-27T03:33:26Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 0013-4651 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166820 | |
dc.description.abstract | [EN] The salicylate method is one of the ammonia quantification methods that has been extensively used in literature for quantifying ammonia in the emerging field of nitrogen (electro)fixation. The presence of iron in the sample causes a strong negative interference on the salicylate method. Today, the recommended method to deal with such interferences is the experimental correction method: the iron concentration in the sample is measured using an iron quantification method, and then the corresponding amount of iron is added to the calibration samples. The limitation of this method is that when a batch of samples presents a great iron concentration variability, a different calibration curve has to be obtained for each sample. In this work, the interference of iron III on the salicylate method was experimentally quantified, and a model was proposed to capture the effect of iron III interference on the ammonia quantification result. This model can be used to correct the iron III interferences on ammonia quantification. The great advantage of this correction method is that it only requires three experimental curves in order to correct the iron III interference in any sample provided the iron III concentration is below the total peak suppression concentration. | es_ES |
dc.description.sponsorship | This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery program. This work made use of the MRSEC Shared Experimental Facilities at MIT (SEM) supported by the National Science Foundation under award number DMR-1419807 as well as the HZDR Ion Beam Center TEM facilities. J.J.G.S. is very grateful to the Generalitat Valenciana and to the European Social Fund, for their economic support in the form of Vali+d postdoctoral grant (APOSTD-2018-001). G.M.L. was partially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Electrochemical Society | es_ES |
dc.relation.ispartof | Journal of The Electrochemical Society | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ammonia quantification | es_ES |
dc.subject | Interference quantification and correction | es_ES |
dc.subject | Iron interferences | es_ES |
dc.subject | Salicylate method | es_ES |
dc.subject | UV-visible spectroscopy | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Salicylate method for ammonia quantification in nitrogen electroreduction experiments: The correction of iron III interference | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1149/1945-7111/abbdd6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1419807/US/MIT Materials Research Science and Engineering Center - Full Proposal/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Giner-Sanz, JJ.; Leverick, G.; Pérez-Herranz, V.; Shao-Horn, Y. (2020). Salicylate method for ammonia quantification in nitrogen electroreduction experiments: The correction of iron III interference. Journal of The Electrochemical Society. 167(13):1-10. https://doi.org/10.1149/1945-7111/abbdd6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1149/1945-7111/abbdd6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 167 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.pasarela | S\423545 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Toyota Research Institute | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | Natural Sciences and Engineering Research Council of Canada | es_ES |
dc.description.references | Kibsgaard, J., Nørskov, J. K., & Chorkendorff, I. (2019). The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 4(12), 2986-2988. doi:10.1021/acsenergylett.9b02286 | es_ES |
dc.description.references | Wang, Q., Guo, J., & Chen, P. (2020). The Power of Hydrides. Joule, 4(4), 705-709. doi:10.1016/j.joule.2020.02.008 | es_ES |
dc.description.references | Wang, Y., Shi, M., Bao, D., Meng, F., Zhang, Q., Zhou, Y., … Jiang, Q. (2019). Generating Defect‐Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie International Edition, 58(28), 9464-9469. doi:10.1002/anie.201903969 | es_ES |
dc.description.references | Andersen, S. Z., Čolić, V., Yang, S., Schwalbe, J. A., Nielander, A. C., McEnaney, J. M., … Chorkendorff, I. (2019). A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 570(7762), 504-508. doi:10.1038/s41586-019-1260-x | es_ES |
dc.description.references | Kim, K., Lee, N., Yoo, C.-Y., Kim, J.-N., Yoon, H. C., & Han, J.-I. (2016). Communication—Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure. Journal of The Electrochemical Society, 163(7), F610-F612. doi:10.1149/2.0231607jes | es_ES |
dc.description.references | Murakami, T., Nishikiori, T., Nohira, T., & Ito, Y. (2005). Investigation of Anodic Reaction of Electrolytic Ammonia Synthesis in Molten Salts Under Atmospheric Pressure. Journal of The Electrochemical Society, 152(5), D75. doi:10.1149/1.1874752 | es_ES |
dc.description.references | Yang, J., Li, T., Zhong, C., Guan, X., & Hu, C. (2016). Nitrogen Fixation in Water Using Air Phase Gliding Arc Plasma. Journal of The Electrochemical Society, 163(10), E288-E292. doi:10.1149/2.0221610jes | es_ES |
dc.description.references | Wang, P., Chang, F., Gao, W., Guo, J., Wu, G., He, T., & Chen, P. (2016). Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 9(1), 64-70. doi:10.1038/nchem.2595 | es_ES |
dc.description.references | Nash, J., Yang, X., Anibal, J., Wang, J., Yan, Y., & Xu, B. (2017). Electrochemical Nitrogen Reduction Reaction on Noble Metal Catalysts in Proton and Hydroxide Exchange Membrane Electrolyzers. Journal of The Electrochemical Society, 164(14), F1712-F1716. doi:10.1149/2.0071802jes | es_ES |
dc.description.references | Wang, Q., Guo, J., & Chen, P. (2019). Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry, 36, 25-36. doi:10.1016/j.jechem.2019.01.027 | es_ES |
dc.description.references | Li, D., Xu, X., Li, Z., Wang, T., & Wang, C. (2020). Detection methods of ammonia nitrogen in water: A review. TrAC Trends in Analytical Chemistry, 127, 115890. doi:10.1016/j.trac.2020.115890 | es_ES |
dc.description.references | Searle, P. L. (1984). The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. The Analyst, 109(5), 549. doi:10.1039/an9840900549 | es_ES |
dc.description.references | Song, Y., Johnson, D., Peng, R., Hensley, D. K., Bonnesen, P. V., Liang, L., … Rondinone, A. J. (2018). A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 4(4). doi:10.1126/sciadv.1700336 | es_ES |
dc.description.references | Ivancic, I. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Research, 18(9), 1143-1147. doi:10.1016/0043-1354(84)90230-6 | es_ES |
dc.description.references | Ayyub, O. B., Behrens, A. M., Heligman, B. T., Natoli, M. E., Ayoub, J. J., Cunningham, G., … Kofinas, P. (2015). Simple and inexpensive quantification of ammonia in whole blood. Molecular Genetics and Metabolism, 115(2-3), 95-100. doi:10.1016/j.ymgme.2015.04.004 | es_ES |
dc.description.references | Prieto-Blanco, M. C., Jornet-Martinez, N., Verdú-Andrés, J., Molíns-Legua, C., & Campíns-Falcó, P. (2019). Quantifying both ammonium and proline in wines and beer by using a PDMS composite for sensoring. Talanta, 198, 371-376. doi:10.1016/j.talanta.2019.02.001 | es_ES |
dc.description.references | Prieto-Blanco, M. C., Jornet-Martínez, N., Moliner-Martínez, Y., Molins-Legua, C., Herráez-Hernández, R., Verdú Andrés, J., & Campins-Falcó, P. (2015). Development of a polydimethylsiloxane–thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples. Science of The Total Environment, 503-504, 105-112. doi:10.1016/j.scitotenv.2014.07.077 | es_ES |
dc.description.references | Prieto-Blanco, M. C., Ballester-Caudet, A., Souto-Varela, F. J., López-Mahía, P., & Campíns-Falcó, P. (2020). Rapid evaluation of ammonium in different rain events minimizing needed volume by a cost-effective and sustainable PDMS supported solid sensor. Environmental Pollution, 265, 114911. doi:10.1016/j.envpol.2020.114911 | es_ES |
dc.description.references | McEnaney, J. M., Blair, S. J., Nielander, A. C., Schwalbe, J. A., Koshy, D. M., Cargnello, M., & Jaramillo, T. F. (2020). Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustainable Chemistry & Engineering, 8(7), 2672-2681. doi:10.1021/acssuschemeng.9b05983 | es_ES |
dc.description.references | Schiffer, Z. J., Lazouski, N., Corbin, N., & Manthiram, K. (2019). Nature of the First Electron Transfer in Electrochemical Ammonia Activation in a Nonaqueous Medium. The Journal of Physical Chemistry C, 123(15), 9713-9720. doi:10.1021/acs.jpcc.9b00669 | es_ES |
dc.description.references | Moliner-Martínez, Y., Herráez-Hernández, R., & Campíns-Falcó, P. (2005). Improved detection limit for ammonium/ammonia achieved by Berthelot’s reaction by use of solid-phase extraction coupled to diffuse reflectance spectroscopy. Analytica Chimica Acta, 534(2), 327-334. doi:10.1016/j.aca.2004.11.044 | es_ES |
dc.description.references | López Pasquali, C. E., Fernández Hernando, P., & Durand Alegría, J. S. (2007). Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis. Analytica Chimica Acta, 600(1-2), 177-182. doi:10.1016/j.aca.2007.03.015 | es_ES |
dc.description.references | Kashima, H., & Regan, J. M. (2015). Facultative Nitrate Reduction by Electrode-Respiring Geobacter metallireducens Biofilms as a Competitive Reaction to Electrode Reduction in a Bioelectrochemical System. Environmental Science & Technology, 49(5), 3195-3202. doi:10.1021/es504882f | es_ES |
dc.description.references | Caballo-López, A., & Luque de Castro, M. D. (2006). Continuous Ultrasound-Assisted Extraction Coupled to Flow Injection−Pervaporation, Derivatization, and Spectrophotometric Detection for the Determination of Ammonia in Cigarettes. Analytical Chemistry, 78(7), 2297-2301. doi:10.1021/ac051115u | es_ES |
dc.description.references | Bietz, J. A. (1974). Micro-Kjeldahl analysis by an improved automated ammonia determination following manual digestion. Analytical Chemistry, 46(11), 1617-1618. doi:10.1021/ac60347a040 | es_ES |
dc.description.references | Lazouski, N., Schiffer, Z. J., Williams, K., & Manthiram, K. (2019). Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction. Joule, 3(4), 1127-1139. doi:10.1016/j.joule.2019.02.003 | es_ES |
dc.description.references | McEnaney, J. M., Singh, A. R., Schwalbe, J. A., Kibsgaard, J., Lin, J. C., Cargnello, M., … Nørskov, J. K. (2017). Ammonia synthesis from N2and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy & Environmental Science, 10(7), 1621-1630. doi:10.1039/c7ee01126a | es_ES |
dc.description.references | Cerdà, A., Oms, M. T., Forteza, R., & Cerdà, V. (1995). Evaluation of flow injection methods for ammonium determination in wastewater samples. Analytica Chimica Acta, 311(2), 165-173. doi:10.1016/0003-2670(95)00182-y | es_ES |
dc.description.references | Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002 | es_ES |
dc.description.references | Verdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 12(6), 399-402. doi:10.1016/0043-1354(78)90107-0 | es_ES |
dc.description.references | Kempers, A. J., & Kok, C. J. (1989). Re-examination of the determination of ammonium as the indophenol blue complex using salicylate. Analytica Chimica Acta, 221, 147-155. doi:10.1016/s0003-2670(00)81948-0 | es_ES |
dc.description.references | Yu, H., Yang, L., Li, D., & Chen, Y. (2021). A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture. Information Processing in Agriculture, 8(1), 64-74. doi:10.1016/j.inpa.2020.04.002 | es_ES |
dc.description.references | Wang, C., Li, Z., Pan, Z., & Li, D. (2018). Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture. Computers and Electronics in Agriculture, 150, 364-373. doi:10.1016/j.compag.2018.05.011 | es_ES |
dc.description.references | Fernandez, C. A., Hortance, N. M., Liu, Y.-H., Lim, J., Hatzell, K. B., & Hatzell, M. C. (2020). Opportunities for intermediate temperature renewable ammonia electrosynthesis. Journal of Materials Chemistry A, 8(31), 15591-15606. doi:10.1039/d0ta03753b | es_ES |
dc.description.references | Guo, J., & Chen, P. (2017). Catalyst: NH3 as an Energy Carrier. Chem, 3(5), 709-712. doi:10.1016/j.chempr.2017.10.004 | es_ES |
dc.description.references | Sclafani, A., Augugliaro, V., & Schiavello, M. (1983). Dinitrogen Electrochemical Reduction to Ammonia over Iron Cathode in Aqueous Medium. Journal of The Electrochemical Society, 130(3), 734-736. doi:10.1149/1.2119794 | es_ES |
dc.description.references | Zhou, F., Azofra, L. M., Ali, M., Kar, M., Simonov, A. N., McDonnell-Worth, C., … MacFarlane, D. R. (2017). Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 10(12), 2516-2520. doi:10.1039/c7ee02716h | es_ES |
dc.description.references | Mcdonald, M., Fuller, J., Fortunelli, A., Goddard, W. A., & An, Q. (2019). Highly Efficient Ni-Doped Iron Catalyst for Ammonia Synthesis from Quantum-Mechanics-Based Hierarchical High-Throughput Catalyst Screening. The Journal of Physical Chemistry C, 123(28), 17375-17383. doi:10.1021/acs.jpcc.9b04386 | es_ES |
dc.description.references | Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., & Centi, G. (2017). Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angewandte Chemie International Edition, 56(10), 2699-2703. doi:10.1002/anie.201609533 | es_ES |
dc.description.references | Wang, H.-B., Wang, J.-Q., Zhang, R., Cheng, C.-Q., Qiu, K.-W., Yang, Y., … Du, X.-W. (2020). Bionic Design of a Mo(IV)-Doped FeS2 Catalyst for Electroreduction of Dinitrogen to Ammonia. ACS Catalysis, 10(9), 4914-4921. doi:10.1021/acscatal.0c00271 | es_ES |
dc.description.references | Bower, C. E., & Holm-Hansen, T. (1980). A Salicylate–Hypochlorite Method for Determining Ammonia in Seawater. Canadian Journal of Fisheries and Aquatic Sciences, 37(5), 794-798. doi:10.1139/f80-106 | es_ES |
dc.description.references | Le, P. T. T., & Boyd, C. E. (2012). Comparison of Phenate and Salicylate Methods for Determination of Total Ammonia Nitrogen in Freshwater and Saline Water. Journal of the World Aquaculture Society, 43(6), 885-889. doi:10.1111/j.1749-7345.2012.00616.x | es_ES |
dc.description.references | Pym, R. V. E., & Milham, P. J. (1976). Selectivity of reaction among chlorine, ammonia, and salicylate for determination of ammonia. Analytical Chemistry, 48(9), 1413-1415. doi:10.1021/ac50003a035 | es_ES |
dc.description.references | Krom, M. D. (1980). Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. The Analyst, 105(1249), 305. doi:10.1039/an9800500305 | es_ES |
dc.description.references | Viollier, E., Inglett, P. ., Hunter, K., Roychoudhury, A. ., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15(6), 785-790. doi:10.1016/s0883-2927(99)00097-9 | es_ES |
dc.description.references | Yegorov, D. Y., Kozlov, A. V., Azizova, O. A., & Vladimirov, Y. A. (1993). Simultaneous determination of Fe(III) and Fe(II) in water solutions and tissue homogenates using desferal and 1,10-phenanthroline. Free Radical Biology and Medicine, 15(6), 565-574. doi:10.1016/0891-5849(93)90158-q | es_ES |
dc.description.references | BAG, H., TÜRKER, A. R., TUNÇELI, A., & LALE, M. (2001). Determination of Fe(II)and Fe(III)in Water by Flame Atomic Absorption Spectrophotometry after Their Separation with Aspergillus niger Immobilized on Sepiolite. Analytical Sciences, 17(7), 901-904. doi:10.2116/analsci.17.901 | es_ES |
dc.description.references | Kaasalainen, H., Stefánsson, A., & Druschel, G. K. (2016). Determination of Fe(II), Fe(III) and Fetotal in thermal water by ion chromatography spectrophotometry (IC-Vis). International Journal of Environmental Analytical Chemistry, 96(11), 1074-1090. doi:10.1080/03067319.2016.1232717 | es_ES |
dc.description.references | Pu, X., Hu, B., Jiang, Z., & Huang, C. (2005). Speciation of dissolved iron(ii) and iron(iii) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. The Analyst, 130(8), 1175. doi:10.1039/b502548f | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |