- -

Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes

Mostrar el registro completo del ítem

Martí Calatayud, MC.; Hessler, R.; Schneider, S.; Bohner, C.; Yüce, S.; Wessling, M.; De Sena, R.... (2020). Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes. Separation and Purification Technology. 246:1-11. https://doi.org/10.1016/j.seppur.2020.116863

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166824

Ficheros en el ítem

Metadatos del ítem

Título: Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes
Autor: Martí Calatayud, Manuel César Hessler, R. Schneider, S. Bohner, C. Yüce, S. Wessling, M. de Sena, R.F. Athayde Júnior, G.B.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] Removal of micropollutants from wastewaters is crucial to ensure safe water reuse and protect natural water-courses. Although membrane bioreactors (MBRs) yield improved degradation of organic compounds, hydraulic ...[+]
Palabras clave: Membrane bioreactor (MBR) , High-strength wastewaters , Powdered activated carbon (PAC) , Micropollutant removal , Membrane fouling , Reverse osmosis (RO)
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Separation and Purification Technology. (issn: 1383-5866 )
DOI: 10.1016/j.seppur.2020.116863
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.seppur.2020.116863
Código del Proyecto:
info:eu-repo/grantAgreement/BMBF//02WCL1334A/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F059/
Agradecimientos:
M.W. acknowledges the support through an Alexander-von-Humboldt Professorship. M.C. Marti-Calatayud acknowledges the support to Generalitat Valenciana through the funding APOSTD2017. This work was supported by the German ...[+]
Tipo: Artículo

References

Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., & Maurer, M. (2016). Emerging solutions to the water challenges of an urbanizing world. Science, 352(6288), 928-933. doi:10.1126/science.aad8641

Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., … Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237. doi:10.1016/j.progpolymsci.2018.01.004

Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301-310. doi:10.1038/nature06599 [+]
Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., & Maurer, M. (2016). Emerging solutions to the water challenges of an urbanizing world. Science, 352(6288), 928-933. doi:10.1126/science.aad8641

Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., … Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237. doi:10.1016/j.progpolymsci.2018.01.004

Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301-310. doi:10.1038/nature06599

Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., … Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619-641. doi:10.1016/j.scitotenv.2013.12.065

Aumeier, B. M., Dang, A. H. Q., Ohs, B., Yüce, S., & Wessling, M. (2018). Aqueous-Phase Temperature Swing Adsorption for Pesticide Removal. Environmental Science & Technology, 53(2), 919-927. doi:10.1021/acs.est.8b05873

Abtahi, S. M., Marbelia, L., Gebreyohannes, A. Y., Ahmadiannamini, P., Joannis-Cassan, C., Albasi, C., … Vankelecom, I. F. J. (2019). Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater. Separation and Purification Technology, 209, 470-481. doi:10.1016/j.seppur.2018.07.071

Huang, L., & Lee, D.-J. (2015). Membrane bioreactor: A mini review on recent R&D works. Bioresource Technology, 194, 383-388. doi:10.1016/j.biortech.2015.07.013

Martí-Calatayud, M. C., Schneider, S., Yüce, S., & Wessling, M. (2018). Interplay between physical cleaning, membrane pore size and fluid rheology during the evolution of fouling in membrane bioreactors. Water Research, 147, 393-402. doi:10.1016/j.watres.2018.10.017

Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897-913. doi:10.1016/j.cej.2016.08.144

Holloway, R. W., Regnery, J., Nghiem, L. D., & Cath, T. Y. (2014). Removal of Trace Organic Chemicals and Performance of a Novel Hybrid Ultrafiltration-Osmotic Membrane Bioreactor. Environmental Science & Technology, 48(18), 10859-10868. doi:10.1021/es501051b

Huang, J., Wang, Z., Zhang, J., Zhang, X., Ma, J., & Wu, Z. (2015). A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors. Scientific Reports, 5(1). doi:10.1038/srep09268

Remy, M., Potier, V., Temmink, H., & Rulkens, W. (2010). Why low powdered activated carbon addition reduces membrane fouling in MBRs. Water Research, 44(3), 861-867. doi:10.1016/j.watres.2009.09.046

Li, X., Hai, F. I., & Nghiem, L. D. (2011). Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresource Technology, 102(9), 5319-5324. doi:10.1016/j.biortech.2010.11.070

Xiao, Y., Yaohari, H., De Araujo, C., Sze, C. C., & Stuckey, D. C. (2017). Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chemical Engineering Journal, 321, 335-345. doi:10.1016/j.cej.2017.03.118

Skouteris, G., Saroj, D., Melidis, P., Hai, F. I., & Ouki, S. (2015). The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation – A critical review. Bioresource Technology, 185, 399-410. doi:10.1016/j.biortech.2015.03.010

Dharupaneedi, S. P., Nataraj, S. K., Nadagouda, M., Reddy, K. R., Shukla, S. S., & Aminabhavi, T. M. (2019). Membrane-based separation of potential emerging pollutants. Separation and Purification Technology, 210, 850-866. doi:10.1016/j.seppur.2018.09.003

Arola, K., Hatakka, H., Mänttäri, M., & Kallioinen, M. (2017). Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Separation and Purification Technology, 186, 333-341. doi:10.1016/j.seppur.2017.06.019

Joss, A., Baenninger, C., Foa, P., Koepke, S., Krauss, M., McArdell, C. S., … Siegrist, H. (2011). Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control. Water Research, 45(18), 6141-6151. doi:10.1016/j.watres.2011.09.011

Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2014). High retention membrane bioreactors: Challenges and opportunities. Bioresource Technology, 167, 539-546. doi:10.1016/j.biortech.2014.06.016

Taheran, M., Brar, S. K., Verma, M., Surampalli, R. Y., Zhang, T. C., & Valero, J. R. (2016). Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Science of The Total Environment, 547, 60-77. doi:10.1016/j.scitotenv.2015.12.139

Gurung, K., Ncibi, M. C., & Sillanpää, M. (2019). Removal and fate of emerging organic micropollutants (EOMs) in municipal wastewater by a pilot-scale membrane bioreactor (MBR) treatment under varying solid retention times. Science of The Total Environment, 667, 671-680. doi:10.1016/j.scitotenv.2019.02.308

Trinh, T., van den Akker, B., Coleman, H. M., Stuetz, R. M., Drewes, J. E., Le-Clech, P., & Khan, S. J. (2016). Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor. Science of The Total Environment, 550, 176-183. doi:10.1016/j.scitotenv.2015.12.083

Tolouei, S., Burnet, J.-B., Autixier, L., Taghipour, M., Bonsteel, J., Duy, S. V., … Dorner, S. (2019). Temporal variability of parasites, bacterial indicators, and wastewater micropollutants in a water resource recovery facility under various weather conditions. Water Research, 148, 446-458. doi:10.1016/j.watres.2018.10.068

Remy, M., van der Marel, P., Zwijnenburg, A., Rulkens, W., & Temmink, H. (2009). Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors. Water Research, 43(2), 345-350. doi:10.1016/j.watres.2008.10.033

Boethling, R. S., Howard, P. H., Meylan, W., Stiteler, W., Beauman, J., & Tirado, N. (1994). Group contribution method for predicting probability and rate of aerobic biodegradation. Environmental Science & Technology, 28(3), 459-465. doi:10.1021/es00052a018

Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439-2451. doi:10.1016/j.watres.2011.01.023

Wells, M. J. M. (2006). Log DOW: Key to Understanding and Regulating Wastewater-Derived Contaminants. Environmental Chemistry, 3(6), 439. doi:10.1071/en06045

Wijekoon, K. C., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2013). The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresource Technology, 144, 247-254. doi:10.1016/j.biortech.2013.06.097

Hai, F. I., Tadkaew, N., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment? Bioresource Technology, 102(10), 6299-6303. doi:10.1016/j.biortech.2011.02.019

Cartagena, P., El Kaddouri, M., Cases, V., Trapote, A., & Prats, D. (2013). Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment. Separation and Purification Technology, 110, 132-143. doi:10.1016/j.seppur.2013.03.024

Ying, Z., & Ping, G. (2006). Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. Separation and Purification Technology, 52(1), 154-160. doi:10.1016/j.seppur.2006.04.010

Martí-Calatayud, M. C., & Wessling, M. (2017). Hydraulic impedance spectroscopy tracks colloidal matter accumulation during ultrafiltration. Journal of Membrane Science, 535, 294-300. doi:10.1016/j.memsci.2017.04.027

Martí-Calatayud, M. C., Schneider, S., & Wessling, M. (2018). On the rejection and reversibility of fouling in ultrafiltration as assessed by hydraulic impedance spectroscopy. Journal of Membrane Science, 564, 532-542. doi:10.1016/j.memsci.2018.07.021

Hu, J., Shang, R., Deng, H., Heijman, S. G. J., & Rietveld, L. C. (2014). Effect of PAC dosage in a pilot-scale PAC–MBR treating micro-polluted surface water. Bioresource Technology, 154, 290-296. doi:10.1016/j.biortech.2013.12.075

Lesage, N., Sperandio, M., & Cabassud, C. (2008). Study of a hybrid process: Adsorption on activated carbon/membrane bioreactor for the treatment of an industrial wastewater. Chemical Engineering and Processing: Process Intensification, 47(3), 303-307. doi:10.1016/j.cep.2007.01.021

Nguyen, L. N., Hai, F. I., Nghiem, L. D., Kang, J., Price, W. E., Park, C., & Yamamoto, K. (2014). Enhancement of removal of trace organic contaminants by powdered activated carbon dosing into membrane bioreactors. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 571-578. doi:10.1016/j.jtice.2013.05.021

Ng, C. A., Sun, D., Zhang, J., Wu, B., & Fane, A. G. (2010). Mechanisms of Fouling Control in Membrane Bioreactors by the Addition of Powdered Activated Carbon. Separation Science and Technology, 45(7), 873-889. doi:10.1080/01496391003667138

Lay, W. C. L., Liu, Y., & Fane, A. G. (2010). Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water Research, 44(1), 21-40. doi:10.1016/j.watres.2009.09.026

Luo, W., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., … Nghiem, L. D. (2015). Effects of salinity build-up on biomass characteristics and trace organic chemical removal: Implications on the development of high retention membrane bioreactors. Bioresource Technology, 177, 274-281. doi:10.1016/j.biortech.2014.11.084

Ilyas, S., Abtahi, S. M., Akkilic, N., Roesink, H. D. W., & de Vos, W. M. (2017). Weak polyelectrolyte multilayers as tunable separation layers for micro-pollutant removal by hollow fiber nanofiltration membranes. Journal of Membrane Science, 537, 220-228. doi:10.1016/j.memsci.2017.05.027

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem