- -

Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Calatayud, Manuel César es_ES
dc.contributor.author Hessler, R. es_ES
dc.contributor.author Schneider, S. es_ES
dc.contributor.author Bohner, C. es_ES
dc.contributor.author Yüce, S. es_ES
dc.contributor.author Wessling, M. es_ES
dc.contributor.author de Sena, R.F. es_ES
dc.contributor.author Athayde Júnior, G.B. es_ES
dc.date.accessioned 2021-05-27T03:33:47Z
dc.date.available 2021-05-27T03:33:47Z
dc.date.issued 2020-09-01 es_ES
dc.identifier.issn 1383-5866 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166824
dc.description.abstract [EN] Removal of micropollutants from wastewaters is crucial to ensure safe water reuse and protect natural water-courses. Although membrane bioreactors (MBRs) yield improved degradation of organic compounds, hydraulic retention times are often too short to satisfy acceptable removal rates of recalcitrant organics. Often, results regarding micropollutant removal in treatment plants are susceptible to uncontrolled feed concentrations, which are concomitant to seasonality and consumer habits. In this work, we investigate the concentration transients of four selected pesticides (carbendazim, diuron, 2,4-D and atrazine), which were constantly dosed to a MBR pilot plant treating high-strength industrial effluents (COD values ). In addition to the regular MBR operation, two feasible means of extending pesticide retention in bioreactors were evaluated: (i) addition of small concentrations of powdered activated carbon (PAC) into the activated sludge and (ii) coupling of the PAC-assisted MBR and a reverse osmosis unit (RO) with recirculation of the retentate. The aim of this work is to provide reliable information on the fate of micropollutants within wastewater treatment plants using different configurations under controlled feed conditions. Results have shown that carbendazim was the only pesticide efficiently (>80%) removed during regular MBR operation, which has been attributed to the presence of electron donating groups attached to its aromatic ring structure. Improved retention of diuron by addition of PAC enhanced its long-term removal, whereas the effect of PAC addition on the removal of 2,4-D and atrazine was only temporary, thus being mainly attributed to an adsorption effect. Additionally, the function of PAC as platform for biofloc formation limited sludge production and slowed down membrane fouling, further improving the general performance of the MBR. The MBR-RO hybrid process was the most effective one in increasing the residence time of pesticides in the bioreactor, regardless of their functional groups and properties, thus facilitating a generalized removal of micropollutants. es_ES
dc.description.sponsorship M.W. acknowledges the support through an Alexander-von-Humboldt Professorship. M.C. Marti-Calatayud acknowledges the support to Generalitat Valenciana through the funding APOSTD2017. This work was supported by the German Federal Ministry of Education and Research (BMBF) through the project BRAMAR (02WCL1334A). The authors thank the company Intrafrut S.A., Almir Gomes da Costa, Lisa Awater, Thiago Santos, Carlos Pereira and Sybille Hanisch for their cooperation. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Separation and Purification Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Membrane bioreactor (MBR) es_ES
dc.subject High-strength wastewaters es_ES
dc.subject Powdered activated carbon (PAC) es_ES
dc.subject Micropollutant removal es_ES
dc.subject Membrane fouling es_ES
dc.subject Reverse osmosis (RO) es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seppur.2020.116863 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMBF//02WCL1334A/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F059/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Martí Calatayud, MC.; Hessler, R.; Schneider, S.; Bohner, C.; Yüce, S.; Wessling, M.; De Sena, R.... (2020). Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes. Separation and Purification Technology. 246:1-11. https://doi.org/10.1016/j.seppur.2020.116863 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.seppur.2020.116863 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 246 es_ES
dc.relation.pasarela S\410169 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.description.references Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., & Maurer, M. (2016). Emerging solutions to the water challenges of an urbanizing world. Science, 352(6288), 928-933. doi:10.1126/science.aad8641 es_ES
dc.description.references Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., … Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237. doi:10.1016/j.progpolymsci.2018.01.004 es_ES
dc.description.references Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301-310. doi:10.1038/nature06599 es_ES
dc.description.references Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., … Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment, 473-474, 619-641. doi:10.1016/j.scitotenv.2013.12.065 es_ES
dc.description.references Aumeier, B. M., Dang, A. H. Q., Ohs, B., Yüce, S., & Wessling, M. (2018). Aqueous-Phase Temperature Swing Adsorption for Pesticide Removal. Environmental Science & Technology, 53(2), 919-927. doi:10.1021/acs.est.8b05873 es_ES
dc.description.references Abtahi, S. M., Marbelia, L., Gebreyohannes, A. Y., Ahmadiannamini, P., Joannis-Cassan, C., Albasi, C., … Vankelecom, I. F. J. (2019). Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater. Separation and Purification Technology, 209, 470-481. doi:10.1016/j.seppur.2018.07.071 es_ES
dc.description.references Huang, L., & Lee, D.-J. (2015). Membrane bioreactor: A mini review on recent R&D works. Bioresource Technology, 194, 383-388. doi:10.1016/j.biortech.2015.07.013 es_ES
dc.description.references Martí-Calatayud, M. C., Schneider, S., Yüce, S., & Wessling, M. (2018). Interplay between physical cleaning, membrane pore size and fluid rheology during the evolution of fouling in membrane bioreactors. Water Research, 147, 393-402. doi:10.1016/j.watres.2018.10.017 es_ES
dc.description.references Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897-913. doi:10.1016/j.cej.2016.08.144 es_ES
dc.description.references Holloway, R. W., Regnery, J., Nghiem, L. D., & Cath, T. Y. (2014). Removal of Trace Organic Chemicals and Performance of a Novel Hybrid Ultrafiltration-Osmotic Membrane Bioreactor. Environmental Science & Technology, 48(18), 10859-10868. doi:10.1021/es501051b es_ES
dc.description.references Huang, J., Wang, Z., Zhang, J., Zhang, X., Ma, J., & Wu, Z. (2015). A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors. Scientific Reports, 5(1). doi:10.1038/srep09268 es_ES
dc.description.references Remy, M., Potier, V., Temmink, H., & Rulkens, W. (2010). Why low powdered activated carbon addition reduces membrane fouling in MBRs. Water Research, 44(3), 861-867. doi:10.1016/j.watres.2009.09.046 es_ES
dc.description.references Li, X., Hai, F. I., & Nghiem, L. D. (2011). Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresource Technology, 102(9), 5319-5324. doi:10.1016/j.biortech.2010.11.070 es_ES
dc.description.references Xiao, Y., Yaohari, H., De Araujo, C., Sze, C. C., & Stuckey, D. C. (2017). Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chemical Engineering Journal, 321, 335-345. doi:10.1016/j.cej.2017.03.118 es_ES
dc.description.references Skouteris, G., Saroj, D., Melidis, P., Hai, F. I., & Ouki, S. (2015). The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation – A critical review. Bioresource Technology, 185, 399-410. doi:10.1016/j.biortech.2015.03.010 es_ES
dc.description.references Dharupaneedi, S. P., Nataraj, S. K., Nadagouda, M., Reddy, K. R., Shukla, S. S., & Aminabhavi, T. M. (2019). Membrane-based separation of potential emerging pollutants. Separation and Purification Technology, 210, 850-866. doi:10.1016/j.seppur.2018.09.003 es_ES
dc.description.references Arola, K., Hatakka, H., Mänttäri, M., & Kallioinen, M. (2017). Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Separation and Purification Technology, 186, 333-341. doi:10.1016/j.seppur.2017.06.019 es_ES
dc.description.references Joss, A., Baenninger, C., Foa, P., Koepke, S., Krauss, M., McArdell, C. S., … Siegrist, H. (2011). Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control. Water Research, 45(18), 6141-6151. doi:10.1016/j.watres.2011.09.011 es_ES
dc.description.references Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2014). High retention membrane bioreactors: Challenges and opportunities. Bioresource Technology, 167, 539-546. doi:10.1016/j.biortech.2014.06.016 es_ES
dc.description.references Taheran, M., Brar, S. K., Verma, M., Surampalli, R. Y., Zhang, T. C., & Valero, J. R. (2016). Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Science of The Total Environment, 547, 60-77. doi:10.1016/j.scitotenv.2015.12.139 es_ES
dc.description.references Gurung, K., Ncibi, M. C., & Sillanpää, M. (2019). Removal and fate of emerging organic micropollutants (EOMs) in municipal wastewater by a pilot-scale membrane bioreactor (MBR) treatment under varying solid retention times. Science of The Total Environment, 667, 671-680. doi:10.1016/j.scitotenv.2019.02.308 es_ES
dc.description.references Trinh, T., van den Akker, B., Coleman, H. M., Stuetz, R. M., Drewes, J. E., Le-Clech, P., & Khan, S. J. (2016). Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor. Science of The Total Environment, 550, 176-183. doi:10.1016/j.scitotenv.2015.12.083 es_ES
dc.description.references Tolouei, S., Burnet, J.-B., Autixier, L., Taghipour, M., Bonsteel, J., Duy, S. V., … Dorner, S. (2019). Temporal variability of parasites, bacterial indicators, and wastewater micropollutants in a water resource recovery facility under various weather conditions. Water Research, 148, 446-458. doi:10.1016/j.watres.2018.10.068 es_ES
dc.description.references Remy, M., van der Marel, P., Zwijnenburg, A., Rulkens, W., & Temmink, H. (2009). Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors. Water Research, 43(2), 345-350. doi:10.1016/j.watres.2008.10.033 es_ES
dc.description.references Boethling, R. S., Howard, P. H., Meylan, W., Stiteler, W., Beauman, J., & Tirado, N. (1994). Group contribution method for predicting probability and rate of aerobic biodegradation. Environmental Science & Technology, 28(3), 459-465. doi:10.1021/es00052a018 es_ES
dc.description.references Tadkaew, N., Hai, F. I., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Removal of trace organics by MBR treatment: The role of molecular properties. Water Research, 45(8), 2439-2451. doi:10.1016/j.watres.2011.01.023 es_ES
dc.description.references Wells, M. J. M. (2006). Log DOW: Key to Understanding and Regulating Wastewater-Derived Contaminants. Environmental Chemistry, 3(6), 439. doi:10.1071/en06045 es_ES
dc.description.references Wijekoon, K. C., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2013). The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresource Technology, 144, 247-254. doi:10.1016/j.biortech.2013.06.097 es_ES
dc.description.references Hai, F. I., Tadkaew, N., McDonald, J. A., Khan, S. J., & Nghiem, L. D. (2011). Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment? Bioresource Technology, 102(10), 6299-6303. doi:10.1016/j.biortech.2011.02.019 es_ES
dc.description.references Cartagena, P., El Kaddouri, M., Cases, V., Trapote, A., & Prats, D. (2013). Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment. Separation and Purification Technology, 110, 132-143. doi:10.1016/j.seppur.2013.03.024 es_ES
dc.description.references Ying, Z., & Ping, G. (2006). Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. Separation and Purification Technology, 52(1), 154-160. doi:10.1016/j.seppur.2006.04.010 es_ES
dc.description.references Martí-Calatayud, M. C., & Wessling, M. (2017). Hydraulic impedance spectroscopy tracks colloidal matter accumulation during ultrafiltration. Journal of Membrane Science, 535, 294-300. doi:10.1016/j.memsci.2017.04.027 es_ES
dc.description.references Martí-Calatayud, M. C., Schneider, S., & Wessling, M. (2018). On the rejection and reversibility of fouling in ultrafiltration as assessed by hydraulic impedance spectroscopy. Journal of Membrane Science, 564, 532-542. doi:10.1016/j.memsci.2018.07.021 es_ES
dc.description.references Hu, J., Shang, R., Deng, H., Heijman, S. G. J., & Rietveld, L. C. (2014). Effect of PAC dosage in a pilot-scale PAC–MBR treating micro-polluted surface water. Bioresource Technology, 154, 290-296. doi:10.1016/j.biortech.2013.12.075 es_ES
dc.description.references Lesage, N., Sperandio, M., & Cabassud, C. (2008). Study of a hybrid process: Adsorption on activated carbon/membrane bioreactor for the treatment of an industrial wastewater. Chemical Engineering and Processing: Process Intensification, 47(3), 303-307. doi:10.1016/j.cep.2007.01.021 es_ES
dc.description.references Nguyen, L. N., Hai, F. I., Nghiem, L. D., Kang, J., Price, W. E., Park, C., & Yamamoto, K. (2014). Enhancement of removal of trace organic contaminants by powdered activated carbon dosing into membrane bioreactors. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 571-578. doi:10.1016/j.jtice.2013.05.021 es_ES
dc.description.references Ng, C. A., Sun, D., Zhang, J., Wu, B., & Fane, A. G. (2010). Mechanisms of Fouling Control in Membrane Bioreactors by the Addition of Powdered Activated Carbon. Separation Science and Technology, 45(7), 873-889. doi:10.1080/01496391003667138 es_ES
dc.description.references Lay, W. C. L., Liu, Y., & Fane, A. G. (2010). Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water Research, 44(1), 21-40. doi:10.1016/j.watres.2009.09.026 es_ES
dc.description.references Luo, W., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., … Nghiem, L. D. (2015). Effects of salinity build-up on biomass characteristics and trace organic chemical removal: Implications on the development of high retention membrane bioreactors. Bioresource Technology, 177, 274-281. doi:10.1016/j.biortech.2014.11.084 es_ES
dc.description.references Ilyas, S., Abtahi, S. M., Akkilic, N., Roesink, H. D. W., & de Vos, W. M. (2017). Weak polyelectrolyte multilayers as tunable separation layers for micro-pollutant removal by hollow fiber nanofiltration membranes. Journal of Membrane Science, 537, 220-228. doi:10.1016/j.memsci.2017.05.027 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem