- -

3D patient-specific spinal cord computational model for SCS management: potential clinical applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3D patient-specific spinal cord computational model for SCS management: potential clinical applications

Mostrar el registro completo del ítem

Solanes, C.; Dura, JL.; Canós, M.; De Andres, J.; Marti-Bonmati, L.; Saiz Rodríguez, FJ. (2021). 3D patient-specific spinal cord computational model for SCS management: potential clinical applications. Journal of Neural Engineering. 18(3):1-19. https://doi.org/10.1088/1741-2552/abe44f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166831

Ficheros en el ítem

Metadatos del ítem

Título: 3D patient-specific spinal cord computational model for SCS management: potential clinical applications
Autor: Solanes, Carmen Dura, Jose L. Canós, M.A. De Andres, Jose Marti-Bonmati, Luis Saiz Rodríguez, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Objective. Although spinal cord stimulation (SCS) is an established therapy for treating neuropathic chronic pain, in tonic stimulation, postural changes, electrode migration or badly-positioned electrodes can produce ...[+]
Palabras clave: 3D patient-specific model , Spinal cord stimulation therapy , Paresthesia coverage , Clinical applications , Computational model
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Neural Engineering. (issn: 1741-2560 )
DOI: 10.1088/1741-2552/abe44f
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1741-2552/abe44f
Agradecimientos:
The authors are grateful to Surgicen S. L. for providing financial assistance, also to thank Joaquin Bosque Hernandez (nurse from the Magnetic Resonance Unit of the Hospital Universitari i Politecnic La Fe) for readjusting ...[+]
Tipo: Artículo

References

Lee, A. W., & Pilitsis, J. G. (2006). Spinal cord stimulation: indications and outcomes. Neurosurgical Focus, 21(6), 1-6. doi:10.3171/foc.2006.21.6.6

Guan, Y. (2012). Spinal Cord Stimulation: Neurophysiological and Neurochemical Mechanisms of Action. Current Pain and Headache Reports, 16(3), 217-225. doi:10.1007/s11916-012-0260-4

Kleiber, J.-C., Marlier, B., Bannwarth, M., Theret, E., Peruzzi, P., & Litre, F. (2016). Is spinal cord stimulation safe? A review of 13 years of implantations and complications. Revue Neurologique, 172(11), 689-695. doi:10.1016/j.neurol.2016.09.003 [+]
Lee, A. W., & Pilitsis, J. G. (2006). Spinal cord stimulation: indications and outcomes. Neurosurgical Focus, 21(6), 1-6. doi:10.3171/foc.2006.21.6.6

Guan, Y. (2012). Spinal Cord Stimulation: Neurophysiological and Neurochemical Mechanisms of Action. Current Pain and Headache Reports, 16(3), 217-225. doi:10.1007/s11916-012-0260-4

Kleiber, J.-C., Marlier, B., Bannwarth, M., Theret, E., Peruzzi, P., & Litre, F. (2016). Is spinal cord stimulation safe? A review of 13 years of implantations and complications. Revue Neurologique, 172(11), 689-695. doi:10.1016/j.neurol.2016.09.003

Kim, C. H. (2013). Importance of Axial Migration of Spinal Cord Stimulation Trial Leads with Position. November 2103, 6;16(6;11), E763-E768. doi:10.36076/ppj.2013/16/e763

Caylor, J., Reddy, R., Yin, S., Cui, C., Huang, M., Huang, C., … Lerman, I. (2019). Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectronic Medicine, 5(1). doi:10.1186/s42234-019-0023-1

Linderoth, B., & Foreman, R. D. (2017). Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation: Technology at the Neural Interface, 20(6), 525-533. doi:10.1111/ner.12624

Holsheimer, J., & Buitenweg, J. R. (2015). Review: Bioelectrical Mechanisms in Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 18(3), 161-170. doi:10.1111/ner.12279

Oakley, J. C., & Prager, J. P. (2002). Spinal Cord Stimulation. Spine, 27(22), 2574-2583. doi:10.1097/00007632-200211150-00034

Melzack, R., & Wall, P. D. (1965). Pain Mechanisms: A New Theory. Science, 150(3699), 971-979. doi:10.1126/science.150.3699.971

Manola, L., Holsheimer, J., & Veltink, P. (2005). Technical Performance of Percutaneous Leads for Spinal Cord Stimulation: A Modeling Study. Neuromodulation: Technology at the Neural Interface, 8(2), 88-99. doi:10.1111/j.1525-1403.2005.00224.x

Manola, L., Holsheimer, J., Veltink, P. H., Bradley, K., & Peterson, D. (2007). Theoretical Investigation Into Longitudinal Cathodal Field Steering in Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 10(2), 120-132. doi:10.1111/j.1525-1403.2007.00100.x

Lee, D., Hershey, B., Bradley, K., & Yearwood, T. (2011). Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study. Medical & Biological Engineering & Computing, 49(7). doi:10.1007/s11517-011-0780-9

Holsheimer, J., & Wesselink, W. A. (1997). Effect of Anode-Cathode Configuration on Paresthesia Coverage in Spinal Cord Stimulation. Neurosurgery, 41(3), 654-660. doi:10.1097/00006123-199709000-00030

Huang, Q., Oya, H., Flouty, O. E., Reddy, C. G., Howard, M. A., Gillies, G. T., & Utz, M. (2014). Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling. Medical & Biological Engineering & Computing, 52(6), 531-538. doi:10.1007/s11517-014-1157-7

Howell, B., Lad, S. P., & Grill, W. M. (2014). Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation. PLoS ONE, 9(12), e114938. doi:10.1371/journal.pone.0114938

Durá, J. L., Solanes, C., De Andrés, J., & Saiz, J. (2018). Computational Study of the Effect of Electrode Polarity on Neural Activation Related to Paresthesia Coverage in Spinal Cord Stimulation Therapy. Neuromodulation: Technology at the Neural Interface, 22(3), 269-279. doi:10.1111/ner.12909

Fradet, L., Arnoux, P.-J., Ranjeva, J.-P., Petit, Y., & Callot, V. (2014). Morphometrics of the Entire Human Spinal Cord and Spinal Canal Measured From In Vivo High-Resolution Anatomical Magnetic Resonance Imaging. Spine, 39(4), E262-E269. doi:10.1097/brs.0000000000000125

Khadka, N., Liu, X., Zander, H., Swami, J., Rogers, E., Lempka, S. F., & Bikson, M. (2020). Realistic anatomically detailed open-source spinal cord stimulation (RADO-SCS) model. Journal of Neural Engineering, 17(2), 026033. doi:10.1088/1741-2552/ab8344

Viljoen, S. (2013). Journal of Medical and Biological Engineering, 33(2), 193. doi:10.5405/jmbe.1317

Lempka, S. F., Zander, H. J., Anaya, C. J., Wyant, A., Ozinga, J. G., & Machado, A. G. (2019). Patient‐Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain. Neuromodulation: Technology at the Neural Interface, 23(5), 572-581. doi:10.1111/ner.13037

Levy, R. M. (2014). Anatomic Considerations for Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 17, 2-11. doi:10.1111/ner.12175

Holsheimer, J. (2002). Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 5(1), 25-31. doi:10.1046/j.1525-1403.2002._2005.x

Ladenbauer, J., Minassian, K., Hofstoetter, U. S., Dimitrijevic, M. R., & Rattay, F. (2010). Stimulation of the Human Lumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), 637-645. doi:10.1109/tnsre.2010.2054112

Arle, J. E., Carlson, K. W., Mei, L., & Shils, J. L. (2013). Modeling Effects of Scar on Patterns of Dorsal Column Stimulation. Neuromodulation: Technology at the Neural Interface, 17(4), 320-333. doi:10.1111/ner.12128

Struijk, J. J., Holsheimer, J., & Boom, H. B. K. (1993). Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Transactions on Biomedical Engineering, 40(7), 632-639. doi:10.1109/10.237693

McCann, H., Pisano, G., & Beltrachini, L. (2019). Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topography, 32(5), 825-858. doi:10.1007/s10548-019-00710-2

McIntyre, C. C., Mori, S., Sherman, D. L., Thakor, N. V., & Vitek, J. L. (2004). Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clinical Neurophysiology, 115(3), 589-595. doi:10.1016/j.clinph.2003.10.033

De Leener, B., Cohen-Adad, J., & Kadoury, S. (2015). Automatic Segmentation of the Spinal Cord and Spinal Canal Coupled With Vertebral Labeling. IEEE Transactions on Medical Imaging, 34(8), 1705-1718. doi:10.1109/tmi.2015.2437192

Zander, H. J., Graham, R. D., Anaya, C. J., & Lempka, S. F. (2020). Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. Journal of Neural Engineering, 17(3), 036019. doi:10.1088/1741-2552/ab8fc4

Wesselink, W. A., Holsheimer, J., & Boom, H. B. K. (1999). A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Medical & Biological Engineering & Computing, 37(2), 228-235. doi:10.1007/bf02513291

Richardson, A. G., McIntyre, C. C., & Grill, W. M. (2000). Modelling the effects of electric fields on nerve fibres: Influence of the myelin sheath. Medical & Biological Engineering & Computing, 38(4), 438-446. doi:10.1007/bf02345014

Schalow, G., Zäch, G. A., & Warzok, R. (1995). Classification of human peripheral nerve fibre groups by conduction velocity and nerve fibre diameter is preserved following spinal cord lesion. Journal of the Autonomic Nervous System, 52(2-3), 125-150. doi:10.1016/0165-1838(94)00153-b

Van Veen, B. K., Schellens, R. L. L. A., Stegeman, D. F., Schoonhoven, R., & Gabreëls-Festen, A. A. W. M. (1995). Conduction velocity distributions compared to fiber size distributions in normal human sural nerve. Muscle & Nerve, 18(10), 1121-1127. doi:10.1002/mus.880181008

Ranck, J. B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Research, 98(3), 417-440. doi:10.1016/0006-8993(75)90364-9

Tackmann, W., & Lehmann, H. J. (1974). Refractory Period in Human Sensory Nerve Fibres. European Neurology, 12(5-6), 277-292. doi:10.1159/000114626

Feirabend, H. K. P., Choufoer, H., Ploeger, S., Holsheimer, J., & van Gool, J. D. (2002). Morphometry of human superficial dorsal and dorsolateral column fibres: significance to spinal cord stimulation. Brain, 125(5), 1137-1149. doi:10.1093/brain/awf111

Makino, M., Mimatsu, K., Saito, H., Konishi, N., & Hashizume, Y. (1996). Morphometric Study of Myelinated Fibers in Human Cervical Spinal Cord White Matter. Spine, 21(9), 1010-1016. doi:10.1097/00007632-199605010-00002

Wesselink, W. A., Holsheimer, J., Nuttin, B., Boom, H. B. K., King, G. W., Gybels, J. M., & de Sutter, P. (1998). Estimation of fiber diameters in the spinal dorsal columns from clinical data. IEEE Transactions on Biomedical Engineering, 45(11), 1355-1362. doi:10.1109/10.725332

Lempka, S. F., McIntyre, C. C., Kilgore, K. L., & Machado, A. G. (2015). Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management. Anesthesiology, 122(6), 1362-1376. doi:10.1097/aln.0000000000000649

McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the Excitability of Mammalian Nerve Fibers: Influence of Afterpotentials on the Recovery Cycle. Journal of Neurophysiology, 87(2), 995-1006. doi:10.1152/jn.00353.2001

McNeal, D. R. (1976). Analysis of a Model for Excitation of Myelinated Nerve. IEEE Transactions on Biomedical Engineering, BME-23(4), 329-337. doi:10.1109/tbme.1976.324593

Rattay, F. (1986). Analysis of Models for External Stimulation of Axons. IEEE Transactions on Biomedical Engineering, BME-33(10), 974-977. doi:10.1109/tbme.1986.325670

Jensen, M. P., & Brownstone, R. M. (2018). Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. European Journal of Pain, 23(4), 652-659. doi:10.1002/ejp.1336

Miller, J. P., Eldabe, S., Buchser, E., Johanek, L. M., Guan, Y., & Linderoth, B. (2016). Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation: Technology at the Neural Interface, 19(4), 373-384. doi:10.1111/ner.12438

Bossetti, C. A., Birdno, M. J., & Grill, W. M. (2007). Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. Journal of Neural Engineering, 5(1), 44-53. doi:10.1088/1741-2560/5/1/005

Molnar, G., & Barolat, G. (2014). Principles of Cord Activation During Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 17, 12-21. doi:10.1111/ner.12171

Taghva, A., Karst, E., & Underwood, P. (2017). Clinical Paresthesia Atlas Illustrates Likelihood of Coverage Based on Spinal Cord Stimulator Electrode Location. Neuromodulation: Technology at the Neural Interface, 20(6), 582-588. doi:10.1111/ner.12594

Russo, M., & Van Buyten, J.-P. (2015). 10-kHz High-Frequency SCS Therapy: A Clinical Summary. Pain Medicine, 16(5), 934-942. doi:10.1111/pme.12617

Al-Kaisy, A., Palmisani, S., Smith, T. E., Carganillo, R., Houghton, R., Pang, D., … Lucas, J. (2017). Long-Term Improvements in Chronic Axial Low Back Pain Patients Without Previous Spinal Surgery: A Cohort Analysis of 10-kHz High-Frequency Spinal Cord Stimulation over 36 Months. Pain Medicine, 19(6), 1219-1226. doi:10.1093/pm/pnx237

Barolat, G. (1998). Epidural Spinal Cord Stimulation: Anatomical and Electrical Properties of the Intraspinal Structures Relevant to Spinal Cord Stimulation and Clinical Correlations. Neuromodulation: Technology at the Neural Interface, 1(2), 63-71. doi:10.1111/j.1525-1403.1998.tb00019.x

Capogrosso, M., Wenger, N., Raspopovic, S., Musienko, P., Beauparlant, J., Bassi Luciani, L., … Micera, S. (2013). A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. Journal of Neuroscience, 33(49), 19326-19340. doi:10.1523/jneurosci.1688-13.2013

Anaya, C. J., Zander, H. J., Graham, R. D., Sankarasubramanian, V., & Lempka, S. F. (2019). Evoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study. Neuromodulation: Technology at the Neural Interface, 23(1), 64-73. doi:10.1111/ner.12965

Struijk, J. J., Holsheimer, J., van Veen, B. K., & Boom, H. B. K. (1991). Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Transactions on Biomedical Engineering, 38(1), 104-110. doi:10.1109/10.68217

Chakravarthy, K., Fishman, M. A., Zuidema, X., Hunter, C. W., & Levy, R. (2019). Mechanism of Action in Burst Spinal Cord Stimulation: Review and Recent Advances. Pain Medicine, 20(Supplement_1), S13-S22. doi:10.1093/pm/pnz073

Smits, H., van Kleef, M., & Joosten, E. A. (2012). Spinal cord stimulation of dorsal columns in a rat model of neuropathic pain: Evidence for a segmental spinal mechanism of pain relief. Pain, 153(1), 177-183. doi:10.1016/j.pain.2011.10.015

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem