Mostrar el registro sencillo del ítem
dc.contributor.author | Solanes, Carmen | es_ES |
dc.contributor.author | Dura, Jose L. | es_ES |
dc.contributor.author | Canós, M.A. | es_ES |
dc.contributor.author | De Andres, Jose | es_ES |
dc.contributor.author | Marti-Bonmati, Luis | es_ES |
dc.contributor.author | Saiz Rodríguez, Francisco Javier | es_ES |
dc.date.accessioned | 2021-05-27T03:34:19Z | |
dc.date.available | 2021-05-27T03:34:19Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.issn | 1741-2560 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166831 | |
dc.description.abstract | [EN] Objective. Although spinal cord stimulation (SCS) is an established therapy for treating neuropathic chronic pain, in tonic stimulation, postural changes, electrode migration or badly-positioned electrodes can produce annoying stimulation (intercostal neuralgia) in about 35% of the patients. SCS models are used to study the effect of electrical stimulation to better manage the stimulation parameters and electrode position. The goal of this work was to develop a realistic 3D patient-specific spinal cord model from a real patient and develop a future clinical application that would help physicians to optimize paresthesia coverage in SCS therapy. Approach. We developed two 3D patient-specific models from a high-resolution MRI of two patients undergoing SCS treatment. The model consisted of a finite element model of the spinal cord and a sensory myelinated nerve fiber model. The same simulations were performed with a generalized spinal cord model and we compared the results with the clinical data to evaluate the advantages of a patient-specific model. To identify the geometrical parameters that most influence the stimulation predictions, a sensitivity analysis was conducted. We used the patient-specific model to perform a clinical application involving the pre-implantation selection of electrode polarity and study the effect of electrode offset. Main results. The patient-specific model correlated better with clinical data than the generalized model. Electrode-dura mater distance, dorsal cerebrospinal fluid (CSF) thickness, and CSF diameter are the geometrical parameters that caused significant changes in the stimulation predictions. Electrode polarity could be planned and optimized to stimulate the patient's painful dermatomes. The addition of offset in parallel electrodes would not have been beneficial for one of the patients of this study because they reduce neural activation displacement. Significance. This is the first study to relate the activation area model prediction in dorsal columns with the clinical effect on paresthesia coverage. The outcomes show that 3D patient-specific models would help physicians to choose the best stimulation parameters to optimize neural activation and SCS therapy in tonic stimulation. | es_ES |
dc.description.sponsorship | The authors are grateful to Surgicen S. L. for providing financial assistance, also to thank Joaquin Bosque Hernandez (nurse from the Magnetic Resonance Unit of the Hospital Universitari i Politecnic La Fe) for readjusting the MRI acquisition protocol based on the capacity of the MR equipment, which made the study possible. Finally, the authors wish to express their gratitude to Virginie Callot for providing us with all the spinal cord measurements of her research group's study. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Neural Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 3D patient-specific model | es_ES |
dc.subject | Spinal cord stimulation therapy | es_ES |
dc.subject | Paresthesia coverage | es_ES |
dc.subject | Clinical applications | es_ES |
dc.subject | Computational model | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | 3D patient-specific spinal cord computational model for SCS management: potential clinical applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1741-2552/abe44f | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Solanes, C.; Dura, JL.; Canós, M.; De Andres, J.; Marti-Bonmati, L.; Saiz Rodríguez, FJ. (2021). 3D patient-specific spinal cord computational model for SCS management: potential clinical applications. Journal of Neural Engineering. 18(3):1-19. https://doi.org/10.1088/1741-2552/abe44f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1741-2552/abe44f | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 33556926 | es_ES |
dc.relation.pasarela | S\429586 | es_ES |
dc.contributor.funder | Surgicen, S.L. | es_ES |
dc.description.references | Lee, A. W., & Pilitsis, J. G. (2006). Spinal cord stimulation: indications and outcomes. Neurosurgical Focus, 21(6), 1-6. doi:10.3171/foc.2006.21.6.6 | es_ES |
dc.description.references | Guan, Y. (2012). Spinal Cord Stimulation: Neurophysiological and Neurochemical Mechanisms of Action. Current Pain and Headache Reports, 16(3), 217-225. doi:10.1007/s11916-012-0260-4 | es_ES |
dc.description.references | Kleiber, J.-C., Marlier, B., Bannwarth, M., Theret, E., Peruzzi, P., & Litre, F. (2016). Is spinal cord stimulation safe? A review of 13 years of implantations and complications. Revue Neurologique, 172(11), 689-695. doi:10.1016/j.neurol.2016.09.003 | es_ES |
dc.description.references | Kim, C. H. (2013). Importance of Axial Migration of Spinal Cord Stimulation Trial Leads with Position. November 2103, 6;16(6;11), E763-E768. doi:10.36076/ppj.2013/16/e763 | es_ES |
dc.description.references | Caylor, J., Reddy, R., Yin, S., Cui, C., Huang, M., Huang, C., … Lerman, I. (2019). Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectronic Medicine, 5(1). doi:10.1186/s42234-019-0023-1 | es_ES |
dc.description.references | Linderoth, B., & Foreman, R. D. (2017). Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation: Technology at the Neural Interface, 20(6), 525-533. doi:10.1111/ner.12624 | es_ES |
dc.description.references | Holsheimer, J., & Buitenweg, J. R. (2015). Review: Bioelectrical Mechanisms in Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 18(3), 161-170. doi:10.1111/ner.12279 | es_ES |
dc.description.references | Oakley, J. C., & Prager, J. P. (2002). Spinal Cord Stimulation. Spine, 27(22), 2574-2583. doi:10.1097/00007632-200211150-00034 | es_ES |
dc.description.references | Melzack, R., & Wall, P. D. (1965). Pain Mechanisms: A New Theory. Science, 150(3699), 971-979. doi:10.1126/science.150.3699.971 | es_ES |
dc.description.references | Manola, L., Holsheimer, J., & Veltink, P. (2005). Technical Performance of Percutaneous Leads for Spinal Cord Stimulation: A Modeling Study. Neuromodulation: Technology at the Neural Interface, 8(2), 88-99. doi:10.1111/j.1525-1403.2005.00224.x | es_ES |
dc.description.references | Manola, L., Holsheimer, J., Veltink, P. H., Bradley, K., & Peterson, D. (2007). Theoretical Investigation Into Longitudinal Cathodal Field Steering in Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 10(2), 120-132. doi:10.1111/j.1525-1403.2007.00100.x | es_ES |
dc.description.references | Lee, D., Hershey, B., Bradley, K., & Yearwood, T. (2011). Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study. Medical & Biological Engineering & Computing, 49(7). doi:10.1007/s11517-011-0780-9 | es_ES |
dc.description.references | Holsheimer, J., & Wesselink, W. A. (1997). Effect of Anode-Cathode Configuration on Paresthesia Coverage in Spinal Cord Stimulation. Neurosurgery, 41(3), 654-660. doi:10.1097/00006123-199709000-00030 | es_ES |
dc.description.references | Huang, Q., Oya, H., Flouty, O. E., Reddy, C. G., Howard, M. A., Gillies, G. T., & Utz, M. (2014). Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling. Medical & Biological Engineering & Computing, 52(6), 531-538. doi:10.1007/s11517-014-1157-7 | es_ES |
dc.description.references | Howell, B., Lad, S. P., & Grill, W. M. (2014). Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation. PLoS ONE, 9(12), e114938. doi:10.1371/journal.pone.0114938 | es_ES |
dc.description.references | Durá, J. L., Solanes, C., De Andrés, J., & Saiz, J. (2018). Computational Study of the Effect of Electrode Polarity on Neural Activation Related to Paresthesia Coverage in Spinal Cord Stimulation Therapy. Neuromodulation: Technology at the Neural Interface, 22(3), 269-279. doi:10.1111/ner.12909 | es_ES |
dc.description.references | Fradet, L., Arnoux, P.-J., Ranjeva, J.-P., Petit, Y., & Callot, V. (2014). Morphometrics of the Entire Human Spinal Cord and Spinal Canal Measured From In Vivo High-Resolution Anatomical Magnetic Resonance Imaging. Spine, 39(4), E262-E269. doi:10.1097/brs.0000000000000125 | es_ES |
dc.description.references | Khadka, N., Liu, X., Zander, H., Swami, J., Rogers, E., Lempka, S. F., & Bikson, M. (2020). Realistic anatomically detailed open-source spinal cord stimulation (RADO-SCS) model. Journal of Neural Engineering, 17(2), 026033. doi:10.1088/1741-2552/ab8344 | es_ES |
dc.description.references | Viljoen, S. (2013). Journal of Medical and Biological Engineering, 33(2), 193. doi:10.5405/jmbe.1317 | es_ES |
dc.description.references | Lempka, S. F., Zander, H. J., Anaya, C. J., Wyant, A., Ozinga, J. G., & Machado, A. G. (2019). Patient‐Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain. Neuromodulation: Technology at the Neural Interface, 23(5), 572-581. doi:10.1111/ner.13037 | es_ES |
dc.description.references | Levy, R. M. (2014). Anatomic Considerations for Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 17, 2-11. doi:10.1111/ner.12175 | es_ES |
dc.description.references | Holsheimer, J. (2002). Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 5(1), 25-31. doi:10.1046/j.1525-1403.2002._2005.x | es_ES |
dc.description.references | Ladenbauer, J., Minassian, K., Hofstoetter, U. S., Dimitrijevic, M. R., & Rattay, F. (2010). Stimulation of the Human Lumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), 637-645. doi:10.1109/tnsre.2010.2054112 | es_ES |
dc.description.references | Arle, J. E., Carlson, K. W., Mei, L., & Shils, J. L. (2013). Modeling Effects of Scar on Patterns of Dorsal Column Stimulation. Neuromodulation: Technology at the Neural Interface, 17(4), 320-333. doi:10.1111/ner.12128 | es_ES |
dc.description.references | Struijk, J. J., Holsheimer, J., & Boom, H. B. K. (1993). Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Transactions on Biomedical Engineering, 40(7), 632-639. doi:10.1109/10.237693 | es_ES |
dc.description.references | McCann, H., Pisano, G., & Beltrachini, L. (2019). Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topography, 32(5), 825-858. doi:10.1007/s10548-019-00710-2 | es_ES |
dc.description.references | McIntyre, C. C., Mori, S., Sherman, D. L., Thakor, N. V., & Vitek, J. L. (2004). Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clinical Neurophysiology, 115(3), 589-595. doi:10.1016/j.clinph.2003.10.033 | es_ES |
dc.description.references | De Leener, B., Cohen-Adad, J., & Kadoury, S. (2015). Automatic Segmentation of the Spinal Cord and Spinal Canal Coupled With Vertebral Labeling. IEEE Transactions on Medical Imaging, 34(8), 1705-1718. doi:10.1109/tmi.2015.2437192 | es_ES |
dc.description.references | Zander, H. J., Graham, R. D., Anaya, C. J., & Lempka, S. F. (2020). Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. Journal of Neural Engineering, 17(3), 036019. doi:10.1088/1741-2552/ab8fc4 | es_ES |
dc.description.references | Wesselink, W. A., Holsheimer, J., & Boom, H. B. K. (1999). A model of the electrical behaviour of myelinated sensory nerve fibres based on human data. Medical & Biological Engineering & Computing, 37(2), 228-235. doi:10.1007/bf02513291 | es_ES |
dc.description.references | Richardson, A. G., McIntyre, C. C., & Grill, W. M. (2000). Modelling the effects of electric fields on nerve fibres: Influence of the myelin sheath. Medical & Biological Engineering & Computing, 38(4), 438-446. doi:10.1007/bf02345014 | es_ES |
dc.description.references | Schalow, G., Zäch, G. A., & Warzok, R. (1995). Classification of human peripheral nerve fibre groups by conduction velocity and nerve fibre diameter is preserved following spinal cord lesion. Journal of the Autonomic Nervous System, 52(2-3), 125-150. doi:10.1016/0165-1838(94)00153-b | es_ES |
dc.description.references | Van Veen, B. K., Schellens, R. L. L. A., Stegeman, D. F., Schoonhoven, R., & Gabreëls-Festen, A. A. W. M. (1995). Conduction velocity distributions compared to fiber size distributions in normal human sural nerve. Muscle & Nerve, 18(10), 1121-1127. doi:10.1002/mus.880181008 | es_ES |
dc.description.references | Ranck, J. B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Research, 98(3), 417-440. doi:10.1016/0006-8993(75)90364-9 | es_ES |
dc.description.references | Tackmann, W., & Lehmann, H. J. (1974). Refractory Period in Human Sensory Nerve Fibres. European Neurology, 12(5-6), 277-292. doi:10.1159/000114626 | es_ES |
dc.description.references | Feirabend, H. K. P., Choufoer, H., Ploeger, S., Holsheimer, J., & van Gool, J. D. (2002). Morphometry of human superficial dorsal and dorsolateral column fibres: significance to spinal cord stimulation. Brain, 125(5), 1137-1149. doi:10.1093/brain/awf111 | es_ES |
dc.description.references | Makino, M., Mimatsu, K., Saito, H., Konishi, N., & Hashizume, Y. (1996). Morphometric Study of Myelinated Fibers in Human Cervical Spinal Cord White Matter. Spine, 21(9), 1010-1016. doi:10.1097/00007632-199605010-00002 | es_ES |
dc.description.references | Wesselink, W. A., Holsheimer, J., Nuttin, B., Boom, H. B. K., King, G. W., Gybels, J. M., & de Sutter, P. (1998). Estimation of fiber diameters in the spinal dorsal columns from clinical data. IEEE Transactions on Biomedical Engineering, 45(11), 1355-1362. doi:10.1109/10.725332 | es_ES |
dc.description.references | Lempka, S. F., McIntyre, C. C., Kilgore, K. L., & Machado, A. G. (2015). Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management. Anesthesiology, 122(6), 1362-1376. doi:10.1097/aln.0000000000000649 | es_ES |
dc.description.references | McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the Excitability of Mammalian Nerve Fibers: Influence of Afterpotentials on the Recovery Cycle. Journal of Neurophysiology, 87(2), 995-1006. doi:10.1152/jn.00353.2001 | es_ES |
dc.description.references | McNeal, D. R. (1976). Analysis of a Model for Excitation of Myelinated Nerve. IEEE Transactions on Biomedical Engineering, BME-23(4), 329-337. doi:10.1109/tbme.1976.324593 | es_ES |
dc.description.references | Rattay, F. (1986). Analysis of Models for External Stimulation of Axons. IEEE Transactions on Biomedical Engineering, BME-33(10), 974-977. doi:10.1109/tbme.1986.325670 | es_ES |
dc.description.references | Jensen, M. P., & Brownstone, R. M. (2018). Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. European Journal of Pain, 23(4), 652-659. doi:10.1002/ejp.1336 | es_ES |
dc.description.references | Miller, J. P., Eldabe, S., Buchser, E., Johanek, L. M., Guan, Y., & Linderoth, B. (2016). Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation: Technology at the Neural Interface, 19(4), 373-384. doi:10.1111/ner.12438 | es_ES |
dc.description.references | Bossetti, C. A., Birdno, M. J., & Grill, W. M. (2007). Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. Journal of Neural Engineering, 5(1), 44-53. doi:10.1088/1741-2560/5/1/005 | es_ES |
dc.description.references | Molnar, G., & Barolat, G. (2014). Principles of Cord Activation During Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface, 17, 12-21. doi:10.1111/ner.12171 | es_ES |
dc.description.references | Taghva, A., Karst, E., & Underwood, P. (2017). Clinical Paresthesia Atlas Illustrates Likelihood of Coverage Based on Spinal Cord Stimulator Electrode Location. Neuromodulation: Technology at the Neural Interface, 20(6), 582-588. doi:10.1111/ner.12594 | es_ES |
dc.description.references | Russo, M., & Van Buyten, J.-P. (2015). 10-kHz High-Frequency SCS Therapy: A Clinical Summary. Pain Medicine, 16(5), 934-942. doi:10.1111/pme.12617 | es_ES |
dc.description.references | Al-Kaisy, A., Palmisani, S., Smith, T. E., Carganillo, R., Houghton, R., Pang, D., … Lucas, J. (2017). Long-Term Improvements in Chronic Axial Low Back Pain Patients Without Previous Spinal Surgery: A Cohort Analysis of 10-kHz High-Frequency Spinal Cord Stimulation over 36 Months. Pain Medicine, 19(6), 1219-1226. doi:10.1093/pm/pnx237 | es_ES |
dc.description.references | Barolat, G. (1998). Epidural Spinal Cord Stimulation: Anatomical and Electrical Properties of the Intraspinal Structures Relevant to Spinal Cord Stimulation and Clinical Correlations. Neuromodulation: Technology at the Neural Interface, 1(2), 63-71. doi:10.1111/j.1525-1403.1998.tb00019.x | es_ES |
dc.description.references | Capogrosso, M., Wenger, N., Raspopovic, S., Musienko, P., Beauparlant, J., Bassi Luciani, L., … Micera, S. (2013). A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. Journal of Neuroscience, 33(49), 19326-19340. doi:10.1523/jneurosci.1688-13.2013 | es_ES |
dc.description.references | Anaya, C. J., Zander, H. J., Graham, R. D., Sankarasubramanian, V., & Lempka, S. F. (2019). Evoked Potentials Recorded From the Spinal Cord During Neurostimulation for Pain: A Computational Modeling Study. Neuromodulation: Technology at the Neural Interface, 23(1), 64-73. doi:10.1111/ner.12965 | es_ES |
dc.description.references | Struijk, J. J., Holsheimer, J., van Veen, B. K., & Boom, H. B. K. (1991). Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Transactions on Biomedical Engineering, 38(1), 104-110. doi:10.1109/10.68217 | es_ES |
dc.description.references | Chakravarthy, K., Fishman, M. A., Zuidema, X., Hunter, C. W., & Levy, R. (2019). Mechanism of Action in Burst Spinal Cord Stimulation: Review and Recent Advances. Pain Medicine, 20(Supplement_1), S13-S22. doi:10.1093/pm/pnz073 | es_ES |
dc.description.references | Smits, H., van Kleef, M., & Joosten, E. A. (2012). Spinal cord stimulation of dorsal columns in a rat model of neuropathic pain: Evidence for a segmental spinal mechanism of pain relief. Pain, 153(1), 177-183. doi:10.1016/j.pain.2011.10.015 | es_ES |