- -

Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations

Show full item record

Hassan, A.; O'donoghue, L.; Sánchez Canales, V.; Corberán, JM.; Payá-Herrero, J.; Jockenhoefer, H. (2020). Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports. 6(7):147-159. https://doi.org/10.1016/j.egyr.2020.05.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166835

Files in this item

Item Metadata

Title: Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations
Author: Hassan, Abdelrahman O'Donoghue, Laura Sánchez Canales, V. Corberán, José M. Payá-Herrero, Jorge Jockenhoefer, Henning
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] One of the bottlenecks for a wider implementation of renewable energies is the development of efficient energy storage systems which can compensate for the intermittency of renewable energy sources. Pumped thermal ...[+]
Subjects: High-temperatureheatpump , OrganicRankinecycle , Thermalenergystoragesystem , Modelling , Refrigerants
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Energy Reports. (issn: 2352-4847 )
DOI: 10.1016/j.egyr.2020.05.010
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.egyr.2020.05.010
Project ID:
info:eu-repo/grantAgreement/EC/H2020/764042/EU/Compressed Heat Energy Storage for Energy from Renewable sources/
Thanks:
This work has been partially funded by the grant agreement No. 764042 (CHESTER project) of the European Union's Horizon 2020 research and innovation program.
Type: Artículo

References

Abarr, M., Geels, B., Hertzberg, J., & Montoya, L. D. (2017). Pumped thermal energy storage and bottoming system part A: Concept and model. Energy, 120, 320-331. doi:10.1016/j.energy.2016.11.089

Abarr, M., Hertzberg, J., & Montoya, L. D. (2017). Pumped Thermal Energy Storage and Bottoming System Part B: Sensitivity analysis and baseline performance. Energy, 119, 601-611. doi:10.1016/j.energy.2016.11.028

Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179, 350-377. doi:10.1016/j.apenergy.2016.06.097 [+]
Abarr, M., Geels, B., Hertzberg, J., & Montoya, L. D. (2017). Pumped thermal energy storage and bottoming system part A: Concept and model. Energy, 120, 320-331. doi:10.1016/j.energy.2016.11.089

Abarr, M., Hertzberg, J., & Montoya, L. D. (2017). Pumped Thermal Energy Storage and Bottoming System Part B: Sensitivity analysis and baseline performance. Energy, 119, 601-611. doi:10.1016/j.energy.2016.11.028

Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179, 350-377. doi:10.1016/j.apenergy.2016.06.097

Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., & Bertsch, S. S. (2018). High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy, 152, 985-1010. doi:10.1016/j.energy.2018.03.166

BP plc, 2018. BP Statistical Review of World Energy. London.

Budt, M., Wolf, D., Span, R., & Yan, J. (2016). A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 170, 250-268. doi:10.1016/j.apenergy.2016.02.108

Cheayb, M., Marin Gallego, M., Tazerout, M., & Poncet, S. (2019). Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system. Applied Energy, 239, 1371-1384. doi:10.1016/j.apenergy.2019.01.222

Pereira da Cunha, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy, 177, 227-238. doi:10.1016/j.apenergy.2016.05.097

European Comission, 2018. A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. Brussels.

European Council, 2014. European Council 23/24 2014 - Conclusions. Brussels.

Fan, J., Xie, H., Chen, J., Jiang, D., Li, C., Ngaha Tiedeu, W., & Ambre, J. (2020). Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Applied Energy, 258, 114007. doi:10.1016/j.apenergy.2019.114007

Frate, G. F., Antonelli, M., & Desideri, U. (2017). A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 121, 1051-1058. doi:10.1016/j.applthermaleng.2017.04.127

Guo, J., Cai, L., Chen, J., & Zhou, Y. (2016). Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy, 106, 260-269. doi:10.1016/j.energy.2016.03.053

Jockenhöfer, H., Steinmann, W.-D., & Bauer, D. (2018). Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy, 145, 665-676. doi:10.1016/j.energy.2017.12.087

Kusakana, K. (2019). Hydro aeropower for sustainable electricity cost reduction in South African farming applications. Energy Reports, 5, 1645-1650. doi:10.1016/j.egyr.2019.11.023

Laughlin, R. B. (2017). Pumped thermal grid storage with heat exchange. Journal of Renewable and Sustainable Energy, 9(4), 044103. doi:10.1063/1.4994054

Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews, 47, 448-461. doi:10.1016/j.rser.2015.03.089

Liu, J.-L., & Wang, J.-H. (2016). A comparative research of two adiabatic compressed air energy storage systems. Energy Conversion and Management, 108, 566-578. doi:10.1016/j.enconman.2015.11.049

Ma, T., Yang, H., & Lu, L. (2014). Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Conversion and Management, 79, 387-397. doi:10.1016/j.enconman.2013.12.047

McTigue, J. D., White, A. J., & Markides, C. N. (2015). Parametric studies and optimisation of pumped thermal electricity storage. Applied Energy, 137, 800-811. doi:10.1016/j.apenergy.2014.08.039

Navarro-Peris, E., Corberán, J. M., Falco, L., & Martínez-Galván, I. O. (2013). New non-dimensional performance parameters for the characterization of refrigeration compressors. International Journal of Refrigeration, 36(7), 1951-1964. doi:10.1016/j.ijrefrig.2013.07.007

Steinmann, W. D. (2014). The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 69, 543-552. doi:10.1016/j.energy.2014.03.049

Steinmann, W.-D. (2017). Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews, 75, 205-219. doi:10.1016/j.rser.2016.10.065

Steinmann, W.-D., Bauer, D., Jockenhöfer, H., & Johnson, M. (2019). Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy, 183, 185-190. doi:10.1016/j.energy.2019.06.058

Thess, A. (2013). Thermodynamic Efficiency of Pumped Heat Electricity Storage. Physical Review Letters, 111(11). doi:10.1103/physrevlett.111.110602

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record