Mostrar el registro sencillo del ítem
dc.contributor.author | Hassan, Abdelrahman | es_ES |
dc.contributor.author | O'Donoghue, Laura | es_ES |
dc.contributor.author | Sánchez Canales, V. | es_ES |
dc.contributor.author | Corberán, José M. | es_ES |
dc.contributor.author | Payá-Herrero, Jorge | es_ES |
dc.contributor.author | Jockenhoefer, Henning | es_ES |
dc.date.accessioned | 2021-05-27T03:34:39Z | |
dc.date.available | 2021-05-27T03:34:39Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 2352-4847 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166835 | |
dc.description.abstract | [EN] One of the bottlenecks for a wider implementation of renewable energies is the development of efficient energy storage systems which can compensate for the intermittency of renewable energy sources. Pumped thermal energy storage (PTES) is a very recent technology that can be a promising site-independent alternative to pumped hydro energy storage or compressed air energy storage, without the corresponding geological and environmental restrictions. Accordingly, this paper presents a full thermodynamic analysis of a PTES system consisting of a high-temperature heat pump (HTHP), which drives an organic Rankine cycle (ORC) by means of an intermediate high-temperature thermal energy storage system (HT-TES). The latter combines both latent and sensible heat thermal energy storage sub-systems to maximize the advantage of the refrigerant subcooling. After validating the proposed model, several parametric studies have been carried out to assess the system performance using different refrigerants and configurations, under a wide range of source and sink temperatures. The results show that for a system that employs the same refrigerant in both the HTHP and ORC, and for a latent heat thermal energy storage system at 133 degrees C, R-1233zd(E) and R-1234ze(Z) present the best performance. Among all the cases studied with a latent heat thermal energy storage system at 133 degrees C, the best system performance, also considering the impact on the environment, has been achieved employing R-1233zd(E) in the HTHP and Butene in the ORC. Such a system can theoretically reach a power ratio of 1.34 under HTHP source and ORC sink temperatures of 100 and 25 degrees C, respectively. (C) 2020 Published by Elsevier Ltd. | es_ES |
dc.description.sponsorship | This work has been partially funded by the grant agreement No. 764042 (CHESTER project) of the European Union's Horizon 2020 research and innovation program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Energy Reports | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | High-temperatureheatpump | es_ES |
dc.subject | OrganicRankinecycle | es_ES |
dc.subject | Thermalenergystoragesystem | es_ES |
dc.subject | Modelling | es_ES |
dc.subject | Refrigerants | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.egyr.2020.05.010 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/764042/EU/Compressed Heat Energy Storage for Energy from Renewable sources/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Hassan, A.; O'donoghue, L.; Sánchez Canales, V.; Corberán, JM.; Payá-Herrero, J.; Jockenhoefer, H. (2020). Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports. 6(7):147-159. https://doi.org/10.1016/j.egyr.2020.05.010 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.egyr.2020.05.010 | es_ES |
dc.description.upvformatpinicio | 147 | es_ES |
dc.description.upvformatpfin | 159 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\418122 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Abarr, M., Geels, B., Hertzberg, J., & Montoya, L. D. (2017). Pumped thermal energy storage and bottoming system part A: Concept and model. Energy, 120, 320-331. doi:10.1016/j.energy.2016.11.089 | es_ES |
dc.description.references | Abarr, M., Hertzberg, J., & Montoya, L. D. (2017). Pumped Thermal Energy Storage and Bottoming System Part B: Sensitivity analysis and baseline performance. Energy, 119, 601-611. doi:10.1016/j.energy.2016.11.028 | es_ES |
dc.description.references | Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179, 350-377. doi:10.1016/j.apenergy.2016.06.097 | es_ES |
dc.description.references | Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., & Bertsch, S. S. (2018). High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy, 152, 985-1010. doi:10.1016/j.energy.2018.03.166 | es_ES |
dc.description.references | BP plc, 2018. BP Statistical Review of World Energy. London. | es_ES |
dc.description.references | Budt, M., Wolf, D., Span, R., & Yan, J. (2016). A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 170, 250-268. doi:10.1016/j.apenergy.2016.02.108 | es_ES |
dc.description.references | Cheayb, M., Marin Gallego, M., Tazerout, M., & Poncet, S. (2019). Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system. Applied Energy, 239, 1371-1384. doi:10.1016/j.apenergy.2019.01.222 | es_ES |
dc.description.references | Pereira da Cunha, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy, 177, 227-238. doi:10.1016/j.apenergy.2016.05.097 | es_ES |
dc.description.references | European Comission, 2018. A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. Brussels. | es_ES |
dc.description.references | European Council, 2014. European Council 23/24 2014 - Conclusions. Brussels. | es_ES |
dc.description.references | Fan, J., Xie, H., Chen, J., Jiang, D., Li, C., Ngaha Tiedeu, W., & Ambre, J. (2020). Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Applied Energy, 258, 114007. doi:10.1016/j.apenergy.2019.114007 | es_ES |
dc.description.references | Frate, G. F., Antonelli, M., & Desideri, U. (2017). A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 121, 1051-1058. doi:10.1016/j.applthermaleng.2017.04.127 | es_ES |
dc.description.references | Guo, J., Cai, L., Chen, J., & Zhou, Y. (2016). Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy, 106, 260-269. doi:10.1016/j.energy.2016.03.053 | es_ES |
dc.description.references | Jockenhöfer, H., Steinmann, W.-D., & Bauer, D. (2018). Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy, 145, 665-676. doi:10.1016/j.energy.2017.12.087 | es_ES |
dc.description.references | Kusakana, K. (2019). Hydro aeropower for sustainable electricity cost reduction in South African farming applications. Energy Reports, 5, 1645-1650. doi:10.1016/j.egyr.2019.11.023 | es_ES |
dc.description.references | Laughlin, R. B. (2017). Pumped thermal grid storage with heat exchange. Journal of Renewable and Sustainable Energy, 9(4), 044103. doi:10.1063/1.4994054 | es_ES |
dc.description.references | Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews, 47, 448-461. doi:10.1016/j.rser.2015.03.089 | es_ES |
dc.description.references | Liu, J.-L., & Wang, J.-H. (2016). A comparative research of two adiabatic compressed air energy storage systems. Energy Conversion and Management, 108, 566-578. doi:10.1016/j.enconman.2015.11.049 | es_ES |
dc.description.references | Ma, T., Yang, H., & Lu, L. (2014). Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Conversion and Management, 79, 387-397. doi:10.1016/j.enconman.2013.12.047 | es_ES |
dc.description.references | McTigue, J. D., White, A. J., & Markides, C. N. (2015). Parametric studies and optimisation of pumped thermal electricity storage. Applied Energy, 137, 800-811. doi:10.1016/j.apenergy.2014.08.039 | es_ES |
dc.description.references | Navarro-Peris, E., Corberán, J. M., Falco, L., & Martínez-Galván, I. O. (2013). New non-dimensional performance parameters for the characterization of refrigeration compressors. International Journal of Refrigeration, 36(7), 1951-1964. doi:10.1016/j.ijrefrig.2013.07.007 | es_ES |
dc.description.references | Steinmann, W. D. (2014). The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 69, 543-552. doi:10.1016/j.energy.2014.03.049 | es_ES |
dc.description.references | Steinmann, W.-D. (2017). Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews, 75, 205-219. doi:10.1016/j.rser.2016.10.065 | es_ES |
dc.description.references | Steinmann, W.-D., Bauer, D., Jockenhöfer, H., & Johnson, M. (2019). Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy, 183, 185-190. doi:10.1016/j.energy.2019.06.058 | es_ES |
dc.description.references | Thess, A. (2013). Thermodynamic Efficiency of Pumped Heat Electricity Storage. Physical Review Letters, 111(11). doi:10.1103/physrevlett.111.110602 | es_ES |