- -

Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations

Show simple item record

Files in this item

dc.contributor.author Hassan, Abdelrahman es_ES
dc.contributor.author O'Donoghue, Laura es_ES
dc.contributor.author Sánchez Canales, V. es_ES
dc.contributor.author Corberán, José M. es_ES
dc.contributor.author Payá-Herrero, Jorge es_ES
dc.contributor.author Jockenhoefer, Henning es_ES
dc.date.accessioned 2021-05-27T03:34:39Z
dc.date.available 2021-05-27T03:34:39Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 2352-4847 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166835
dc.description.abstract [EN] One of the bottlenecks for a wider implementation of renewable energies is the development of efficient energy storage systems which can compensate for the intermittency of renewable energy sources. Pumped thermal energy storage (PTES) is a very recent technology that can be a promising site-independent alternative to pumped hydro energy storage or compressed air energy storage, without the corresponding geological and environmental restrictions. Accordingly, this paper presents a full thermodynamic analysis of a PTES system consisting of a high-temperature heat pump (HTHP), which drives an organic Rankine cycle (ORC) by means of an intermediate high-temperature thermal energy storage system (HT-TES). The latter combines both latent and sensible heat thermal energy storage sub-systems to maximize the advantage of the refrigerant subcooling. After validating the proposed model, several parametric studies have been carried out to assess the system performance using different refrigerants and configurations, under a wide range of source and sink temperatures. The results show that for a system that employs the same refrigerant in both the HTHP and ORC, and for a latent heat thermal energy storage system at 133 degrees C, R-1233zd(E) and R-1234ze(Z) present the best performance. Among all the cases studied with a latent heat thermal energy storage system at 133 degrees C, the best system performance, also considering the impact on the environment, has been achieved employing R-1233zd(E) in the HTHP and Butene in the ORC. Such a system can theoretically reach a power ratio of 1.34 under HTHP source and ORC sink temperatures of 100 and 25 degrees C, respectively. (C) 2020 Published by Elsevier Ltd. es_ES
dc.description.sponsorship This work has been partially funded by the grant agreement No. 764042 (CHESTER project) of the European Union's Horizon 2020 research and innovation program. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Reports es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject High-temperatureheatpump es_ES
dc.subject OrganicRankinecycle es_ES
dc.subject Thermalenergystoragesystem es_ES
dc.subject Modelling es_ES
dc.subject Refrigerants es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.egyr.2020.05.010 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/764042/EU/Compressed Heat Energy Storage for Energy from Renewable sources/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Hassan, A.; O'donoghue, L.; Sánchez Canales, V.; Corberán, JM.; Payá-Herrero, J.; Jockenhoefer, H. (2020). Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports. 6(7):147-159. https://doi.org/10.1016/j.egyr.2020.05.010 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.egyr.2020.05.010 es_ES
dc.description.upvformatpinicio 147 es_ES
dc.description.upvformatpfin 159 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\418122 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Abarr, M., Geels, B., Hertzberg, J., & Montoya, L. D. (2017). Pumped thermal energy storage and bottoming system part A: Concept and model. Energy, 120, 320-331. doi:10.1016/j.energy.2016.11.089 es_ES
dc.description.references Abarr, M., Hertzberg, J., & Montoya, L. D. (2017). Pumped Thermal Energy Storage and Bottoming System Part B: Sensitivity analysis and baseline performance. Energy, 119, 601-611. doi:10.1016/j.energy.2016.11.028 es_ES
dc.description.references Aneke, M., & Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179, 350-377. doi:10.1016/j.apenergy.2016.06.097 es_ES
dc.description.references Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., & Bertsch, S. S. (2018). High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy, 152, 985-1010. doi:10.1016/j.energy.2018.03.166 es_ES
dc.description.references BP plc, 2018. BP Statistical Review of World Energy. London. es_ES
dc.description.references Budt, M., Wolf, D., Span, R., & Yan, J. (2016). A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 170, 250-268. doi:10.1016/j.apenergy.2016.02.108 es_ES
dc.description.references Cheayb, M., Marin Gallego, M., Tazerout, M., & Poncet, S. (2019). Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system. Applied Energy, 239, 1371-1384. doi:10.1016/j.apenergy.2019.01.222 es_ES
dc.description.references Pereira da Cunha, J., & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy, 177, 227-238. doi:10.1016/j.apenergy.2016.05.097 es_ES
dc.description.references European Comission, 2018. A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. Brussels. es_ES
dc.description.references European Council, 2014. European Council 23/24 2014 - Conclusions. Brussels. es_ES
dc.description.references Fan, J., Xie, H., Chen, J., Jiang, D., Li, C., Ngaha Tiedeu, W., & Ambre, J. (2020). Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Applied Energy, 258, 114007. doi:10.1016/j.apenergy.2019.114007 es_ES
dc.description.references Frate, G. F., Antonelli, M., & Desideri, U. (2017). A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering, 121, 1051-1058. doi:10.1016/j.applthermaleng.2017.04.127 es_ES
dc.description.references Guo, J., Cai, L., Chen, J., & Zhou, Y. (2016). Performance optimization and comparison of pumped thermal and pumped cryogenic electricity storage systems. Energy, 106, 260-269. doi:10.1016/j.energy.2016.03.053 es_ES
dc.description.references Jockenhöfer, H., Steinmann, W.-D., & Bauer, D. (2018). Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy, 145, 665-676. doi:10.1016/j.energy.2017.12.087 es_ES
dc.description.references Kusakana, K. (2019). Hydro aeropower for sustainable electricity cost reduction in South African farming applications. Energy Reports, 5, 1645-1650. doi:10.1016/j.egyr.2019.11.023 es_ES
dc.description.references Laughlin, R. B. (2017). Pumped thermal grid storage with heat exchange. Journal of Renewable and Sustainable Energy, 9(4), 044103. doi:10.1063/1.4994054 es_ES
dc.description.references Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable and Sustainable Energy Reviews, 47, 448-461. doi:10.1016/j.rser.2015.03.089 es_ES
dc.description.references Liu, J.-L., & Wang, J.-H. (2016). A comparative research of two adiabatic compressed air energy storage systems. Energy Conversion and Management, 108, 566-578. doi:10.1016/j.enconman.2015.11.049 es_ES
dc.description.references Ma, T., Yang, H., & Lu, L. (2014). Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Conversion and Management, 79, 387-397. doi:10.1016/j.enconman.2013.12.047 es_ES
dc.description.references McTigue, J. D., White, A. J., & Markides, C. N. (2015). Parametric studies and optimisation of pumped thermal electricity storage. Applied Energy, 137, 800-811. doi:10.1016/j.apenergy.2014.08.039 es_ES
dc.description.references Navarro-Peris, E., Corberán, J. M., Falco, L., & Martínez-Galván, I. O. (2013). New non-dimensional performance parameters for the characterization of refrigeration compressors. International Journal of Refrigeration, 36(7), 1951-1964. doi:10.1016/j.ijrefrig.2013.07.007 es_ES
dc.description.references Steinmann, W. D. (2014). The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 69, 543-552. doi:10.1016/j.energy.2014.03.049 es_ES
dc.description.references Steinmann, W.-D. (2017). Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews, 75, 205-219. doi:10.1016/j.rser.2016.10.065 es_ES
dc.description.references Steinmann, W.-D., Bauer, D., Jockenhöfer, H., & Johnson, M. (2019). Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy, 183, 185-190. doi:10.1016/j.energy.2019.06.058 es_ES
dc.description.references Thess, A. (2013). Thermodynamic Efficiency of Pumped Heat Electricity Storage. Physical Review Letters, 111(11). doi:10.1103/physrevlett.111.110602 es_ES


This item appears in the following Collection(s)

Show simple item record