- -

Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gally, C. es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Bernardes, A.M. es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2021-05-27T03:35:05Z
dc.date.available 2021-05-27T03:35:05Z
dc.date.issued 2020-05-01 es_ES
dc.identifier.issn 1383-5866 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166842
dc.description.abstract [EN] Phosphate is the main cause of eutrophication in many water bodies. Its presence in waters is associated to the fact that is not completely removed in conventional wastewater treatment plants. On the other side, phosphate rocks are a non-renewable resource and considered as a critical raw material. A membrane separation process, able to recover phosphate from wastewater, is a promising process to avoid pollution and to reuse phosphate. This paper investigates the transport of salts of phosphoric acid through an anion-exchange membrane (AEM) by means of chronopotentiograms and polarization curves (CVCs). The presence of multiple transition times in the chronopotentiograms and the corresponding limiting current densities in the CVCs indicate a change in the species being transported in the membrane/diffusion boundary layer system, due to the hydrolysis reactions that take place when the concentration polarization is reached. Under the experimental conditions tested, coupled convection (gravitational and elctroconvection) occurs when a certain threshold in the membrane voltage drop is surpassed independently of the electrolyte concentration. However, at high pH values, only one transition time in the chronopotentiograms, due to the transfer of OH- ions with greater concentration and mobility. This fact is reflected in the CVCs by the large plateaus obtained, which hinders the occurrence of coupled convection phenomena, and consequently, water splitting can be considered as the main mechanism responsible for the overlimiting regime. es_ES
dc.description.sponsorship The authors wish to thank the financial support from FINEP, FAPERGS, CAPES and CNPq (Brazil), from the BRICS-STI/CNPq (BRICS STI Framework Programme), from the European Union through the Erasmus Mundus Program (EBW +) and from the CYTED (Network 318RT0551). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Separation and Purification Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Anion exchange membranes es_ES
dc.subject Phosphoric acid salts es_ES
dc.subject Chronopotentiometry es_ES
dc.subject Current-voltage characteristics es_ES
dc.subject Hydrolysis es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.seppur.2019.116421 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CYTED//318RT0551//PROCESSOS DE MEMBRANAS COMO MELHORES TÉCNICAS DISPONÍVEIS PARA REUSO DE ÁGUA E DE INSUMOS/AQUAMEMTEC/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Gally, C.; García Gabaldón, M.; Ortega Navarro, EM.; Bernardes, A.; Pérez-Herranz, V. (2020). Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values. Separation and Purification Technology. 238:1-10. https://doi.org/10.1016/j.seppur.2019.116421 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.seppur.2019.116421 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 238 es_ES
dc.relation.pasarela S\423548 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Financiadora de Estudos e Projetos, Brasil es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul es_ES
dc.contributor.funder CYTED Ciencia y Tecnología para el Desarrollo es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009 es_ES
dc.description.references Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758. doi:10.1016/j.chemosphere.2011.02.032 es_ES
dc.description.references Van Vuuren, D. P., Bouwman, A. F., & Beusen, A. H. W. (2010). Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 20(3), 428-439. doi:10.1016/j.gloenvcha.2010.04.004 es_ES
dc.description.references Gilbert, N. (2009). Environment: The disappearing nutrient. Nature, 461(7265), 716-718. doi:10.1038/461716a es_ES
dc.description.references Hao, X., Wang, C., van Loosdrecht, M. C. M., & Hu, Y. (2013). Looking Beyond Struvite for P-Recovery. Environmental Science & Technology, 47(10), 4965-4966. doi:10.1021/es401140s es_ES
dc.description.references Arnaldos, M., & Pagilla, K. (2010). Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration. Water Research, 44(18), 5306-5315. doi:10.1016/j.watres.2010.06.066 es_ES
dc.description.references Babatunde, A. O., & Zhao, Y. Q. (2010). Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge. Journal of Hazardous Materials, 184(1-3), 746-752. doi:10.1016/j.jhazmat.2010.08.102 es_ES
dc.description.references Kralchevska, R. P., Prucek, R., Kolařík, J., Tuček, J., Machala, L., Filip, J., … Zbořil, R. (2016). Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 103, 83-91. doi:10.1016/j.watres.2016.07.021 es_ES
dc.description.references Maher, C., Neethling, J. B., Murthy, S., & Pagilla, K. (2015). Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents. Water Research, 85, 226-234. doi:10.1016/j.watres.2015.08.025 es_ES
dc.description.references Furuya, K., Hafuka, A., Kuroiwa, M., Satoh, H., Watanabe, Y., & Yamamura, H. (2017). Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration. Water Research, 124, 521-526. doi:10.1016/j.watres.2017.08.005 es_ES
dc.description.references Zhang, Y., Desmidt, E., Van Looveren, A., Pinoy, L., Meesschaert, B., & Van der Bruggen, B. (2013). Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis. Environmental Science & Technology, 47(11), 5888-5895. doi:10.1021/es4004476 es_ES
dc.description.references Valverde-Pérez, B., Wágner, D. S., Lóránt, B., Gülay, A., Smets, B. F., & Plósz, B. G. (2016). Short-sludge age EBPR process – Microbial and biochemical process characterisation during reactor start-up and operation. Water Research, 104, 320-329. doi:10.1016/j.watres.2016.08.026 es_ES
dc.description.references Chen, X., Zhou, H., Zuo, K., Zhou, Y., Wang, Q., Sun, D., … Huang, X. (2017). Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system. Chemical Engineering Journal, 330, 692-697. doi:10.1016/j.cej.2017.07.130 es_ES
dc.description.references Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573 es_ES
dc.description.references Ueno, Y., & Fujii, M. (2001). Three Years Experience of Operating and Selling Recovered Struvite from Full-Scale Plant. Environmental Technology, 22(11), 1373-1381. doi:10.1080/09593332208618196 es_ES
dc.description.references Battistoni, P., Boccadoro, R., Fatone, F., & Pavan, P. (2005). Auto-Nucleation and Crystal Growth of Struvite in a Demonstrative Fluidized Bed Reactor (FBR). Environmental Technology, 26(9), 975-982. doi:10.1080/09593332608618486 es_ES
dc.description.references Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224-233. doi:10.1016/j.cej.2017.03.149 es_ES
dc.description.references Ren, S., Li, M., Sun, J., Bian, Y., Zuo, K., Zhang, X., … Huang, X. (2017). A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater. Frontiers of Environmental Science & Engineering, 11(4). doi:10.1007/s11783-017-0983-x es_ES
dc.description.references Wimalasiri, Y., Mossad, M., & Zou, L. (2015). Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination, 357, 178-188. doi:10.1016/j.desal.2014.11.015 es_ES
dc.description.references Huang, G.-H., Chen, T.-C., Hsu, S.-F., Huang, Y.-H., & Chuang, S.-H. (2013). Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 52(4-6), 759-765. doi:10.1080/19443994.2013.826331 es_ES
dc.description.references Wang, X., Wang, Y., Zhang, X., Feng, H., Li, C., & Xu, T. (2013). Phosphate Recovery from Excess Sludge by Conventional Electrodialysis (CED) and Electrodialysis with Bipolar Membranes (EDBM). Industrial & Engineering Chemistry Research, 52(45), 15896-15904. doi:10.1021/ie4014088 es_ES
dc.description.references Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015). Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochimica Acta, 181, 90-99. doi:10.1016/j.electacta.2015.04.097 es_ES
dc.description.references Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7 es_ES
dc.description.references Belashova, E. D., Kharchenko, O. A., Sarapulova, V. V., Nikonenko, V. V., & Pismenskaya, N. D. (2017). Effect of Protolysis Reactions on the Shape of Chronopotentiograms of a Homogeneous Anion-Exchange Membrane in NaH2PO4 Solution. Petroleum Chemistry, 57(13), 1207-1218. doi:10.1134/s0965544117130035 es_ES
dc.description.references Belashova, E. D., Pismenskaya, N. D., Nikonenko, V. V., Sistat, P., & Pourcelly, G. (2017). Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. Journal of Membrane Science, 542, 177-185. doi:10.1016/j.memsci.2017.08.002 es_ES
dc.description.references Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186 es_ES
dc.description.references Paltrinieri, L., Poltorak, L., Chu, L., Puts, T., van Baak, W., Sudhölter, E. J. R., & de Smet, L. C. P. M. (2018). Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. Reactive and Functional Polymers, 133, 126-135. doi:10.1016/j.reactfunctpolym.2018.10.005 es_ES
dc.description.references Rybalkina, O., Tsygurina, K., Melnikova, E., Mareev, S., Moroz, I., Nikonenko, V., & Pismenskaya, N. (2019). Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH2PO4 Solution Electrodialysis. International Journal of Molecular Sciences, 20(14), 3593. doi:10.3390/ijms20143593 es_ES
dc.description.references Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. Journal of Membrane Science, 466, 45-57. doi:10.1016/j.memsci.2014.04.033 es_ES
dc.description.references Benvenuti, T., García-Gabaldón, M., Ortega, E. M., Rodrigues, M. A. S., Bernardes, A. M., Pérez-Herranz, V., & Zoppas-Ferreira, J. (2017). Influence of the co-ions on the transport of sulfate through anion exchange membranes. Journal of Membrane Science, 542, 320-328. doi:10.1016/j.memsci.2017.08.021 es_ES
dc.description.references Ray, P., Shahi, V. K., Pathak, T. V., & Ramachandraiah, G. (1999). Transport phenomenon as a function of counter and co-ions in solution: chronopotentiometric behavior of anion exchange membrane in different aqueous electrolyte solutions. Journal of Membrane Science, 160(2), 243-254. doi:10.1016/s0376-7388(99)00088-5 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 es_ES
dc.description.references Marder, L., Ortega Navarro, E. M., Pérez-Herranz, V., Bernardes, A. M., & Ferreira, J. Z. (2006). Evaluation of transition metals transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Membrane Science, 284(1-2), 267-275. doi:10.1016/j.memsci.2006.07.039 es_ES
dc.description.references Herraiz-Cardona, I., Ortega, E., & Pérez-Herranz, V. (2010). Evaluation of the Zn2+ transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Colloid and Interface Science, 341(2), 380-385. doi:10.1016/j.jcis.2009.09.053 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392-393, 137-149. doi:10.1016/j.memsci.2011.12.012 es_ES
dc.description.references Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012 es_ES
dc.description.references Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e es_ES
dc.description.references Nikonenko, V. V., Pismenskaya, N. D., Belova, E. I., Sistat, P., Huguet, P., Pourcelly, G., & Larchet, C. (2010). Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 160(1-2), 101-123. doi:10.1016/j.cis.2010.08.001 es_ES
dc.description.references Krol, J. (1999). Concentration polarization with monopolar ion exchange membranes: currentâ voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154. doi:10.1016/s0376-7388(99)00133-7 es_ES
dc.description.references Larchet, C., Nouri, S., Auclair, B., Dammak, L., & Nikonenko, V. (2008). Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Advances in Colloid and Interface Science, 139(1-2), 45-61. doi:10.1016/j.cis.2008.01.007 es_ES
dc.description.references Scarazzato, T., Panossian, Z., García-Gabaldón, M., Ortega, E. M., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science, 535, 268-278. doi:10.1016/j.memsci.2017.04.048 es_ES
dc.description.references Zook, J. M., Bodor, S., Gyurcsányi, R. E., & Lindner, E. (2010). Interpretation of chronopotentiometric transients of ion-selective membranes with two transition times. Journal of Electroanalytical Chemistry, 638(2), 254-261. doi:10.1016/j.jelechem.2009.11.007 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058 es_ES
dc.description.references Maletzki, F., Rösler, H.-W., & Staude, E. (1992). Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. Journal of Membrane Science, 71(1-2), 105-116. doi:10.1016/0376-7388(92)85010-g es_ES
dc.description.references Elena I. Belova, Galina Yu. Lopatkova, Natalia D. Pismenskaya, Victor V. Nikonenko, and Christian Larchet, G. Pourcelly, Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer, (2006). doi:10.1021/JP062433F. es_ES
dc.description.references Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008 es_ES
dc.description.references Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). Predictive Darken Equation for Maxwell-Stefan Diffusivities in Multicomponent Mixtures. Industrial & Engineering Chemistry Research, 50(17), 10350-10358. doi:10.1021/ie201008a es_ES
dc.description.references Elattar, A., Elmidaoui, A., Pismenskaia, N., Gavach, C., & Pourcelly, G. (1998). Comparison of transport properties of monovalent anions through anion-exchange membranes. Journal of Membrane Science, 143(1-2), 249-261. doi:10.1016/s0376-7388(98)00013-1 es_ES
dc.description.references Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510 es_ES
dc.description.references Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j es_ES
dc.description.references Chen, C., Tse, Y.-L. S., Lindberg, G. E., Knight, C., & Voth, G. A. (2016). Hydroxide Solvation and Transport in Anion Exchange Membranes. Journal of the American Chemical Society, 138(3), 991-1000. doi:10.1021/jacs.5b11951 es_ES
dc.description.references Wang, C., Mo, B., He, Z., Xie, X., Zhao, C. X., Zhang, L., … Guo, Z. (2018). Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer, 138, 363-368. doi:10.1016/j.polymer.2018.01.079 es_ES
dc.description.references Pismenskaya, N. D., Nikonenko, V. V., Belova, E. I., Lopatkova, G. Y., Sistat, P., Pourcelly, G., & Larshe, K. (2007). Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes. Russian Journal of Electrochemistry, 43(3), 307-327. doi:10.1134/s102319350703010x es_ES
dc.description.references Pis’menskaya, N. D., Nikonenko, V. V., Mel’nik, N. A., Pourcelli, G., & Larchet, G. (2012). Effect of the ion-exchange-membrane/solution interfacial characteristics on the mass transfer at severe current regimes. Russian Journal of Electrochemistry, 48(6), 610-628. doi:10.1134/s1023193512060092 es_ES
dc.description.references Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., & Larchet, C. (2006). Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 199(1-3), 59-61. doi:10.1016/j.desal.2006.03.142 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem