Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009
Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758. doi:10.1016/j.chemosphere.2011.02.032
Van Vuuren, D. P., Bouwman, A. F., & Beusen, A. H. W. (2010). Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 20(3), 428-439. doi:10.1016/j.gloenvcha.2010.04.004
[+]
Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009
Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758. doi:10.1016/j.chemosphere.2011.02.032
Van Vuuren, D. P., Bouwman, A. F., & Beusen, A. H. W. (2010). Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 20(3), 428-439. doi:10.1016/j.gloenvcha.2010.04.004
Gilbert, N. (2009). Environment: The disappearing nutrient. Nature, 461(7265), 716-718. doi:10.1038/461716a
Hao, X., Wang, C., van Loosdrecht, M. C. M., & Hu, Y. (2013). Looking Beyond Struvite for P-Recovery. Environmental Science & Technology, 47(10), 4965-4966. doi:10.1021/es401140s
Arnaldos, M., & Pagilla, K. (2010). Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration. Water Research, 44(18), 5306-5315. doi:10.1016/j.watres.2010.06.066
Babatunde, A. O., & Zhao, Y. Q. (2010). Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge. Journal of Hazardous Materials, 184(1-3), 746-752. doi:10.1016/j.jhazmat.2010.08.102
Kralchevska, R. P., Prucek, R., Kolařík, J., Tuček, J., Machala, L., Filip, J., … Zbořil, R. (2016). Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 103, 83-91. doi:10.1016/j.watres.2016.07.021
Maher, C., Neethling, J. B., Murthy, S., & Pagilla, K. (2015). Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents. Water Research, 85, 226-234. doi:10.1016/j.watres.2015.08.025
Furuya, K., Hafuka, A., Kuroiwa, M., Satoh, H., Watanabe, Y., & Yamamura, H. (2017). Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration. Water Research, 124, 521-526. doi:10.1016/j.watres.2017.08.005
Zhang, Y., Desmidt, E., Van Looveren, A., Pinoy, L., Meesschaert, B., & Van der Bruggen, B. (2013). Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis. Environmental Science & Technology, 47(11), 5888-5895. doi:10.1021/es4004476
Valverde-Pérez, B., Wágner, D. S., Lóránt, B., Gülay, A., Smets, B. F., & Plósz, B. G. (2016). Short-sludge age EBPR process – Microbial and biochemical process characterisation during reactor start-up and operation. Water Research, 104, 320-329. doi:10.1016/j.watres.2016.08.026
Chen, X., Zhou, H., Zuo, K., Zhou, Y., Wang, Q., Sun, D., … Huang, X. (2017). Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system. Chemical Engineering Journal, 330, 692-697. doi:10.1016/j.cej.2017.07.130
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573
Ueno, Y., & Fujii, M. (2001). Three Years Experience of Operating and Selling Recovered Struvite from Full-Scale Plant. Environmental Technology, 22(11), 1373-1381. doi:10.1080/09593332208618196
Battistoni, P., Boccadoro, R., Fatone, F., & Pavan, P. (2005). Auto-Nucleation and Crystal Growth of Struvite in a Demonstrative Fluidized Bed Reactor (FBR). Environmental Technology, 26(9), 975-982. doi:10.1080/09593332608618486
Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224-233. doi:10.1016/j.cej.2017.03.149
Ren, S., Li, M., Sun, J., Bian, Y., Zuo, K., Zhang, X., … Huang, X. (2017). A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater. Frontiers of Environmental Science & Engineering, 11(4). doi:10.1007/s11783-017-0983-x
Wimalasiri, Y., Mossad, M., & Zou, L. (2015). Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination, 357, 178-188. doi:10.1016/j.desal.2014.11.015
Huang, G.-H., Chen, T.-C., Hsu, S.-F., Huang, Y.-H., & Chuang, S.-H. (2013). Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 52(4-6), 759-765. doi:10.1080/19443994.2013.826331
Wang, X., Wang, Y., Zhang, X., Feng, H., Li, C., & Xu, T. (2013). Phosphate Recovery from Excess Sludge by Conventional Electrodialysis (CED) and Electrodialysis with Bipolar Membranes (EDBM). Industrial & Engineering Chemistry Research, 52(45), 15896-15904. doi:10.1021/ie4014088
Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015). Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. Electrochimica Acta, 181, 90-99. doi:10.1016/j.electacta.2015.04.097
Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7
Belashova, E. D., Kharchenko, O. A., Sarapulova, V. V., Nikonenko, V. V., & Pismenskaya, N. D. (2017). Effect of Protolysis Reactions on the Shape of Chronopotentiograms of a Homogeneous Anion-Exchange Membrane in NaH2PO4 Solution. Petroleum Chemistry, 57(13), 1207-1218. doi:10.1134/s0965544117130035
Belashova, E. D., Pismenskaya, N. D., Nikonenko, V. V., Sistat, P., & Pourcelly, G. (2017). Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. Journal of Membrane Science, 542, 177-185. doi:10.1016/j.memsci.2017.08.002
Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186
Paltrinieri, L., Poltorak, L., Chu, L., Puts, T., van Baak, W., Sudhölter, E. J. R., & de Smet, L. C. P. M. (2018). Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. Reactive and Functional Polymers, 133, 126-135. doi:10.1016/j.reactfunctpolym.2018.10.005
Rybalkina, O., Tsygurina, K., Melnikova, E., Mareev, S., Moroz, I., Nikonenko, V., & Pismenskaya, N. (2019). Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH2PO4 Solution Electrodialysis. International Journal of Molecular Sciences, 20(14), 3593. doi:10.3390/ijms20143593
Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. Journal of Membrane Science, 466, 45-57. doi:10.1016/j.memsci.2014.04.033
Benvenuti, T., García-Gabaldón, M., Ortega, E. M., Rodrigues, M. A. S., Bernardes, A. M., Pérez-Herranz, V., & Zoppas-Ferreira, J. (2017). Influence of the co-ions on the transport of sulfate through anion exchange membranes. Journal of Membrane Science, 542, 320-328. doi:10.1016/j.memsci.2017.08.021
Ray, P., Shahi, V. K., Pathak, T. V., & Ramachandraiah, G. (1999). Transport phenomenon as a function of counter and co-ions in solution: chronopotentiometric behavior of anion exchange membrane in different aqueous electrolyte solutions. Journal of Membrane Science, 160(2), 243-254. doi:10.1016/s0376-7388(99)00088-5
Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014
Marder, L., Ortega Navarro, E. M., Pérez-Herranz, V., Bernardes, A. M., & Ferreira, J. Z. (2006). Evaluation of transition metals transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Membrane Science, 284(1-2), 267-275. doi:10.1016/j.memsci.2006.07.039
Herraiz-Cardona, I., Ortega, E., & Pérez-Herranz, V. (2010). Evaluation of the Zn2+ transport properties through a cation-exchange membrane by chronopotentiometry. Journal of Colloid and Interface Science, 341(2), 380-385. doi:10.1016/j.jcis.2009.09.053
Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392-393, 137-149. doi:10.1016/j.memsci.2011.12.012
Pismenskaia, N., Sistat, P., Huguet, P., Nikonenko, V., & Pourcelly, G. (2004). Chronopotentiometry applied to the study of ion transfer through anion exchange membranes. Journal of Membrane Science, 228(1), 65-76. doi:10.1016/j.memsci.2003.09.012
Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e
Nikonenko, V. V., Pismenskaya, N. D., Belova, E. I., Sistat, P., Huguet, P., Pourcelly, G., & Larchet, C. (2010). Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science, 160(1-2), 101-123. doi:10.1016/j.cis.2010.08.001
Krol, J. (1999). Concentration polarization with monopolar ion exchange membranes: currentâ voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154. doi:10.1016/s0376-7388(99)00133-7
Larchet, C., Nouri, S., Auclair, B., Dammak, L., & Nikonenko, V. (2008). Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Advances in Colloid and Interface Science, 139(1-2), 45-61. doi:10.1016/j.cis.2008.01.007
Scarazzato, T., Panossian, Z., García-Gabaldón, M., Ortega, E. M., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science, 535, 268-278. doi:10.1016/j.memsci.2017.04.048
Zook, J. M., Bodor, S., Gyurcsányi, R. E., & Lindner, E. (2010). Interpretation of chronopotentiometric transients of ion-selective membranes with two transition times. Journal of Electroanalytical Chemistry, 638(2), 254-261. doi:10.1016/j.jelechem.2009.11.007
Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058
Maletzki, F., Rösler, H.-W., & Staude, E. (1992). Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. Journal of Membrane Science, 71(1-2), 105-116. doi:10.1016/0376-7388(92)85010-g
Elena I. Belova, Galina Yu. Lopatkova, Natalia D. Pismenskaya, Victor V. Nikonenko, and Christian Larchet, G. Pourcelly, Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer, (2006). doi:10.1021/JP062433F.
Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008
Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). Predictive Darken Equation for Maxwell-Stefan Diffusivities in Multicomponent Mixtures. Industrial & Engineering Chemistry Research, 50(17), 10350-10358. doi:10.1021/ie201008a
Elattar, A., Elmidaoui, A., Pismenskaia, N., Gavach, C., & Pourcelly, G. (1998). Comparison of transport properties of monovalent anions through anion-exchange membranes. Journal of Membrane Science, 143(1-2), 249-261. doi:10.1016/s0376-7388(98)00013-1
Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510
Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j
Chen, C., Tse, Y.-L. S., Lindberg, G. E., Knight, C., & Voth, G. A. (2016). Hydroxide Solvation and Transport in Anion Exchange Membranes. Journal of the American Chemical Society, 138(3), 991-1000. doi:10.1021/jacs.5b11951
Wang, C., Mo, B., He, Z., Xie, X., Zhao, C. X., Zhang, L., … Guo, Z. (2018). Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer, 138, 363-368. doi:10.1016/j.polymer.2018.01.079
Pismenskaya, N. D., Nikonenko, V. V., Belova, E. I., Lopatkova, G. Y., Sistat, P., Pourcelly, G., & Larshe, K. (2007). Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes. Russian Journal of Electrochemistry, 43(3), 307-327. doi:10.1134/s102319350703010x
Pis’menskaya, N. D., Nikonenko, V. V., Mel’nik, N. A., Pourcelli, G., & Larchet, G. (2012). Effect of the ion-exchange-membrane/solution interfacial characteristics on the mass transfer at severe current regimes. Russian Journal of Electrochemistry, 48(6), 610-628. doi:10.1134/s1023193512060092
Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., & Larchet, C. (2006). Role of water splitting in development of electroconvection in ion-exchange membrane systems. Desalination, 199(1-3), 59-61. doi:10.1016/j.desal.2006.03.142
[-]