- -

Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis

Mostrar el registro completo del ítem

Giménez, M.; Palanca Cámara, J.; Botti Navarro, VJ. (2020). Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis. Neurocomputing. 378:315-323. https://doi.org/10.1016/j.neucom.2019.08.096

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166844

Ficheros en el ítem

Metadatos del ítem

Título: Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis
Autor: Giménez, Maite Palanca Cámara, Javier Botti Navarro, Vicente Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] In this work, a methodology for applying semantic-based padding in Convolutional Neural Networks for Natural Language Processing tasks is proposed. Semantic-based padding takes advantage of the unused space required ...[+]
Palabras clave: Natural language processing , Convolutional neural networks , Padding
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Neurocomputing. (issn: 0925-2312 )
DOI: 10.1016/j.neucom.2019.08.096
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.neucom.2019.08.096
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-2461-2015/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F002/ES/TECNOLOGIES PER ORGANITZACIONS HUMANES EMOCIONALS/
Descripción: This is the author's version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurocomputing, Volume 378, 22 February 2020, DOI: 10.1016/j.neucom.2019.08.096
Agradecimientos:
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The work of the first author is financed by Grant PAID-01-2461 2015, from the Universitat Politecnica ...[+]
Tipo: Artículo

References

Ye, Q., & Doermann, D. (2015). Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7), 1480-1500. doi:10.1109/tpami.2014.2366765

Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition. ACM Computing Surveys, 35(4), 399-458. doi:10.1145/954339.954342

Li, P., & Mao, K. (2019). Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Systems with Applications, 115, 512-523. doi:10.1016/j.eswa.2018.08.009 [+]
Ye, Q., & Doermann, D. (2015). Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7), 1480-1500. doi:10.1109/tpami.2014.2366765

Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition. ACM Computing Surveys, 35(4), 399-458. doi:10.1145/954339.954342

Li, P., & Mao, K. (2019). Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Systems with Applications, 115, 512-523. doi:10.1016/j.eswa.2018.08.009

Yoo, S., Song, J., & Jeong, O. (2018). Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, 102-111. doi:10.1016/j.eswa.2018.03.055

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551. doi:10.1162/neco.1989.1.4.541

W. Yin, K. Kann, M. Yu, H. Schütze, Comparative study of CNN and RNN for natural language processing, arXiv:1702.01923 (2017).

J. Villena Román, S. Lana Serrano, E. Martínez Cámara, J.C. González Cristóbal, Tass-workshop on sentiment analysis at SEPLN (2013).

Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011

Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x

Kiritchenko, S., Zhu, X., & Mohammad, S. M. (2014). Sentiment Analysis of Short Informal Texts. Journal of Artificial Intelligence Research, 50, 723-762. doi:10.1613/jair.4272

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv:1301.3781 (2013).

P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword information, arXiv:1607.04606 (2016).

Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236-246. doi:10.1016/j.eswa.2017.02.002

Chen, T., Xu, R., He, Y., & Wang, X. (2017). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications, 72, 221-230. doi:10.1016/j.eswa.2016.10.065

Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, arXiv:1510.03820 (2015).

Y. Kim, Convolutional neural networks for sentence classification, arXiv:1408.5882 (2014).

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. doi:10.1109/72.279181

Zhang, W., Itoh, K., Tanida, J., & Ichioka, Y. (1990). Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Applied Optics, 29(32), 4790. doi:10.1364/ao.29.004790

S.M. Mohammad, S. Kiritchenko, X. Zhu, NRC-Canada: building the state-of-the-art in sentiment analysis of tweets, arXiv:1308.6242 (2013).

J. Barnes, R. Klinger, S.S.i. Walde, Assessing state-of-the-art sentiment models on state-of-the-art sentiment datasets, arXiv:1709.04219 (2017).

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. doi:10.1016/j.asej.2014.04.011

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem