- -

Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giménez, Maite es_ES
dc.contributor.author Palanca Cámara, Javier es_ES
dc.contributor.author Botti Navarro, Vicente Juan es_ES
dc.date.accessioned 2021-05-27T03:35:24Z
dc.date.available 2021-05-27T03:35:24Z
dc.date.issued 2020-02-22 es_ES
dc.identifier.issn 0925-2312 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166844
dc.description This is the author's version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurocomputing, Volume 378, 22 February 2020, DOI: 10.1016/j.neucom.2019.08.096 es_ES
dc.description.abstract [EN] In this work, a methodology for applying semantic-based padding in Convolutional Neural Networks for Natural Language Processing tasks is proposed. Semantic-based padding takes advantage of the unused space required for having a fixed-size input matrix in a Convolutional Network effectively, using words present in the sentence. The methodology proposed has been evaluated intensively in Sentiment Analysis tasks using a variety of word embeddings. In all the experimentation carried out the proposed semantic-based padding improved the results achieved when no padding strategy is applied. Moreover, when the model used a pre-trained word embeddings, the performance of the state of the art has been surpassed. es_ES
dc.description.sponsorship We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The work of the first author is financed by Grant PAID-01-2461 2015, from the Universitat Politecnica de Valencia. This work is partially supported by and grantnumber. the Grant PROMETEO/2018/002 from GVA. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Neurocomputing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Natural language processing es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Padding es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neucom.2019.08.096 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-2461-2015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F002/ES/TECNOLOGIES PER ORGANITZACIONS HUMANES EMOCIONALS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Giménez, M.; Palanca Cámara, J.; Botti Navarro, VJ. (2020). Semantic-based padding in convolutional neural networks for improving the performance in natural language processing. A case of study in sentiment analysis. Neurocomputing. 378:315-323. https://doi.org/10.1016/j.neucom.2019.08.096 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.neucom.2019.08.096 es_ES
dc.description.upvformatpinicio 315 es_ES
dc.description.upvformatpfin 323 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 378 es_ES
dc.relation.pasarela S\400125 es_ES
dc.contributor.funder Nvidia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Ye, Q., & Doermann, D. (2015). Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7), 1480-1500. doi:10.1109/tpami.2014.2366765 es_ES
dc.description.references Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition. ACM Computing Surveys, 35(4), 399-458. doi:10.1145/954339.954342 es_ES
dc.description.references Li, P., & Mao, K. (2019). Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts. Expert Systems with Applications, 115, 512-523. doi:10.1016/j.eswa.2018.08.009 es_ES
dc.description.references Yoo, S., Song, J., & Jeong, O. (2018). Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, 102-111. doi:10.1016/j.eswa.2018.03.055 es_ES
dc.description.references LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551. doi:10.1162/neco.1989.1.4.541 es_ES
dc.description.references W. Yin, K. Kann, M. Yu, H. Schütze, Comparative study of CNN and RNN for natural language processing, arXiv:1702.01923 (2017). es_ES
dc.description.references J. Villena Román, S. Lana Serrano, E. Martínez Cámara, J.C. González Cristóbal, Tass-workshop on sentiment analysis at SEPLN (2013). es_ES
dc.description.references Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. doi:10.1561/1500000011 es_ES
dc.description.references Mohammad, S. M., & Turney, P. D. (2012). CROWDSOURCING A WORD-EMOTION ASSOCIATION LEXICON. Computational Intelligence, 29(3), 436-465. doi:10.1111/j.1467-8640.2012.00460.x es_ES
dc.description.references Kiritchenko, S., Zhu, X., & Mohammad, S. M. (2014). Sentiment Analysis of Short Informal Texts. Journal of Artificial Intelligence Research, 50, 723-762. doi:10.1613/jair.4272 es_ES
dc.description.references T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv:1301.3781 (2013). es_ES
dc.description.references P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword information, arXiv:1607.04606 (2016). es_ES
dc.description.references Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, 236-246. doi:10.1016/j.eswa.2017.02.002 es_ES
dc.description.references Chen, T., Xu, R., He, Y., & Wang, X. (2017). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications, 72, 221-230. doi:10.1016/j.eswa.2016.10.065 es_ES
dc.description.references Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, arXiv:1510.03820 (2015). es_ES
dc.description.references Y. Kim, Convolutional neural networks for sentence classification, arXiv:1408.5882 (2014). es_ES
dc.description.references Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. doi:10.1109/72.279181 es_ES
dc.description.references Zhang, W., Itoh, K., Tanida, J., & Ichioka, Y. (1990). Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Applied Optics, 29(32), 4790. doi:10.1364/ao.29.004790 es_ES
dc.description.references S.M. Mohammad, S. Kiritchenko, X. Zhu, NRC-Canada: building the state-of-the-art in sentiment analysis of tweets, arXiv:1308.6242 (2013). es_ES
dc.description.references J. Barnes, R. Klinger, S.S.i. Walde, Assessing state-of-the-art sentiment models on state-of-the-art sentiment datasets, arXiv:1709.04219 (2017). es_ES
dc.description.references Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113. doi:10.1016/j.asej.2014.04.011 es_ES
dc.description.references M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem