- -

Critical relationships in nonviscous systems with proportional damping

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Critical relationships in nonviscous systems with proportional damping

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lázaro, Mario es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.date.accessioned 2021-05-27T03:35:35Z
dc.date.available 2021-05-27T03:35:35Z
dc.date.issued 2020-10-27 es_ES
dc.identifier.issn 0022-460X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166847
dc.description.abstract [EN] Materials with time-dependent dissipative behavior currently play an important role in the design of new mechanisms for vibration control in civil, automotive, aeronautical and mechanical engineering. Damping forces are assumed to depend on the past history of the velocity response via convolution integrals over multiple exponential hereditary kernels. Hence, the computational complexity increases both in time and frequency domain with respect to the widely used viscous models. The derivations of this article are carried out under the hypothesis of nonviscous proportional damping, that is, the time-dependent damping matrix becomes diagonal in the modal space of the undamped system. In this context, the damping parameters, which control the behavior of dissipative forces, will be considered as variable. Critical manifolds can be defined as hypersurfaces in the domain of the damping parameters, which represent boundaries between oscillatory and non-oscillatory motion. In particular, critical manifolds of two parameters are the so-called critical curves. In this paper a new method to obtain critical curves in proportionally damped nonviscous multiple degree-of-freedom systems is presented. It is proved that the conditions of critical damping lead to relationships that enables an analytical determination of such critical curves, in parametric form. In addtion, it is demonstrated that modal critical regions arise as the intersection of the critical curves. The proposed method is validated through two numerical examples involving discrete and continuous system with generalized proportional damping. (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This research was partially supported by the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire (France). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Sound and Vibration es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Viscoelastic systems es_ES
dc.subject Nonviscous systems es_ES
dc.subject Critical damping es_ES
dc.subject Eigenvalues es_ES
dc.subject Proportional damping es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Critical relationships in nonviscous systems with proportional damping es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jsv.2020.115538 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Lázaro, M.; García-Raffi, LM. (2020). Critical relationships in nonviscous systems with proportional damping. Journal of Sound and Vibration. 485:1-14. https://doi.org/10.1016/j.jsv.2020.115538 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jsv.2020.115538 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 485 es_ES
dc.relation.pasarela S\415681 es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.description.references Adhikari, S. (2002). Dynamics of Nonviscously Damped Linear Systems. Journal of Engineering Mechanics, 128(3), 328-339. doi:10.1061/(asce)0733-9399(2002)128:3(328) es_ES
dc.description.references Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032 es_ES
dc.description.references Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569 es_ES
dc.description.references Lázaro, M. (2019). Critical damping in nonviscously damped linear systems. Applied Mathematical Modelling, 65, 661-675. doi:10.1016/j.apm.2018.09.011 es_ES
dc.description.references Nicholson, D. W. (1978). Eigenvalue bounds for damped linear systems. Mechanics Research Communications, 5(3), 147-152. doi:10.1016/0093-6413(78)90049-6 es_ES
dc.description.references Müller, P. C. (1979). Oscillatory damped linear systems. Mechanics Research Communications, 6(2), 81-85. doi:10.1016/0093-6413(79)90017-x es_ES
dc.description.references Inman, D. J., & Andry, A. N. (1980). Some Results on the Nature of Eigenvalues of Discrete Damped Linear Systems. Journal of Applied Mechanics, 47(4), 927-930. doi:10.1115/1.3153815 es_ES
dc.description.references Barkwell, L., & Lancaster, P. (1992). Overdamped and Gyroscopic Vibrating Systems. Journal of Applied Mechanics, 59(1), 176-181. doi:10.1115/1.2899425 es_ES
dc.description.references Beskos, D. E., & Boley, B. A. (1980). Critical Damping in Linear Discrete Dynamic Systems. Journal of Applied Mechanics, 47(3), 627-630. doi:10.1115/1.3153744 es_ES
dc.description.references Papagyri-Beskou, S., & Beskos, D. E. (2002). On critical viscous damping determination in linear discrete dynamic systems. Acta Mechanica, 153(1-2), 33-45. doi:10.1007/bf01177049 es_ES
dc.description.references Muravyov, A. (1998). FORCED VIBRATION RESPONSES OF A VISCOELASTIC STRUCTURE. Journal of Sound and Vibration, 218(5), 892-907. doi:10.1006/jsvi.1998.1819 es_ES
dc.description.references Muller, P. (2005). Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not? Journal of Sound and Vibration, 285(1-2), 501-509. doi:10.1016/j.jsv.2004.09.007 es_ES
dc.description.references Muravyov, A., & Hutton, S. G. (1998). Free Vibration Response Characteristics of a Simple Elasto-Hereditary System. Journal of Vibration and Acoustics, 120(2), 628-632. doi:10.1115/1.2893873 es_ES
dc.description.references Lázaro, M. (2019). Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems. Mathematics and Mechanics of Solids, 24(12), 3843-3861. doi:10.1177/1081286519858382 es_ES
dc.description.references Pierro, E. (2020). Damping control in viscoelastic beam dynamics. Journal of Vibration and Control, 26(19-20), 1753-1764. doi:10.1177/1077546320903195 es_ES
dc.description.references Lázaro, M. (2019). Approximate critical curves in exponentially damped nonviscous systems. Mechanical Systems and Signal Processing, 122, 720-736. doi:10.1016/j.ymssp.2018.12.044 es_ES
dc.description.references Caughey, T. K., & O’Kelly, M. E. J. (1965). Classical Normal Modes in Damped Linear Dynamic Systems. Journal of Applied Mechanics, 32(3), 583-588. doi:10.1115/1.3627262 es_ES
dc.description.references Adhikari, S. (2006). Damping modelling using generalized proportional damping. Journal of Sound and Vibration, 293(1-2), 156-170. doi:10.1016/j.jsv.2005.09.034 es_ES
dc.description.references Adhiakri, S. (2001). Classical Normal Modes in Nonviscously Damped Linear Systems. AIAA Journal, 39(5), 978-980. doi:10.2514/2.1409 es_ES
dc.description.references Lewandowski, R., & Przychodzki, M. (2018). Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers. Archive of Applied Mechanics, 88(10), 1695-1711. doi:10.1007/s00419-018-1394-6 es_ES
dc.description.references Litewka, P., & Lewandowski, R. (2020). Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature. Computers & Structures, 229, 106181. doi:10.1016/j.compstruc.2019.106181 es_ES
dc.description.references Biot, M. A. (1954). Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena. Journal of Applied Physics, 25(11), 1385-1391. doi:10.1063/1.1721573 es_ES
dc.description.references ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 43-61. doi:10.1006/jsvi.2000.3391 es_ES
dc.description.references ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 2, NON-VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 63-88. doi:10.1006/jsvi.2000.3392 es_ES
dc.description.references Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem