Mostrar el registro sencillo del ítem
dc.contributor.author | Lázaro, Mario | es_ES |
dc.contributor.author | García-Raffi, L. M. | es_ES |
dc.date.accessioned | 2021-05-27T03:35:35Z | |
dc.date.available | 2021-05-27T03:35:35Z | |
dc.date.issued | 2020-10-27 | es_ES |
dc.identifier.issn | 0022-460X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166847 | |
dc.description.abstract | [EN] Materials with time-dependent dissipative behavior currently play an important role in the design of new mechanisms for vibration control in civil, automotive, aeronautical and mechanical engineering. Damping forces are assumed to depend on the past history of the velocity response via convolution integrals over multiple exponential hereditary kernels. Hence, the computational complexity increases both in time and frequency domain with respect to the widely used viscous models. The derivations of this article are carried out under the hypothesis of nonviscous proportional damping, that is, the time-dependent damping matrix becomes diagonal in the modal space of the undamped system. In this context, the damping parameters, which control the behavior of dissipative forces, will be considered as variable. Critical manifolds can be defined as hypersurfaces in the domain of the damping parameters, which represent boundaries between oscillatory and non-oscillatory motion. In particular, critical manifolds of two parameters are the so-called critical curves. In this paper a new method to obtain critical curves in proportionally damped nonviscous multiple degree-of-freedom systems is presented. It is proved that the conditions of critical damping lead to relationships that enables an analytical determination of such critical curves, in parametric form. In addtion, it is demonstrated that modal critical regions arise as the intersection of the critical curves. The proposed method is validated through two numerical examples involving discrete and continuous system with generalized proportional damping. (C) 2020 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This research was partially supported by the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire (France). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Sound and Vibration | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Viscoelastic systems | es_ES |
dc.subject | Nonviscous systems | es_ES |
dc.subject | Critical damping | es_ES |
dc.subject | Eigenvalues | es_ES |
dc.subject | Proportional damping | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Critical relationships in nonviscous systems with proportional damping | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jsv.2020.115538 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Lázaro, M.; García-Raffi, LM. (2020). Critical relationships in nonviscous systems with proportional damping. Journal of Sound and Vibration. 485:1-14. https://doi.org/10.1016/j.jsv.2020.115538 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jsv.2020.115538 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 485 | es_ES |
dc.relation.pasarela | S\415681 | es_ES |
dc.contributor.funder | Region Pays de la Loire | es_ES |
dc.description.references | Adhikari, S. (2002). Dynamics of Nonviscously Damped Linear Systems. Journal of Engineering Mechanics, 128(3), 328-339. doi:10.1061/(asce)0733-9399(2002)128:3(328) | es_ES |
dc.description.references | Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032 | es_ES |
dc.description.references | Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569 | es_ES |
dc.description.references | Lázaro, M. (2019). Critical damping in nonviscously damped linear systems. Applied Mathematical Modelling, 65, 661-675. doi:10.1016/j.apm.2018.09.011 | es_ES |
dc.description.references | Nicholson, D. W. (1978). Eigenvalue bounds for damped linear systems. Mechanics Research Communications, 5(3), 147-152. doi:10.1016/0093-6413(78)90049-6 | es_ES |
dc.description.references | Müller, P. C. (1979). Oscillatory damped linear systems. Mechanics Research Communications, 6(2), 81-85. doi:10.1016/0093-6413(79)90017-x | es_ES |
dc.description.references | Inman, D. J., & Andry, A. N. (1980). Some Results on the Nature of Eigenvalues of Discrete Damped Linear Systems. Journal of Applied Mechanics, 47(4), 927-930. doi:10.1115/1.3153815 | es_ES |
dc.description.references | Barkwell, L., & Lancaster, P. (1992). Overdamped and Gyroscopic Vibrating Systems. Journal of Applied Mechanics, 59(1), 176-181. doi:10.1115/1.2899425 | es_ES |
dc.description.references | Beskos, D. E., & Boley, B. A. (1980). Critical Damping in Linear Discrete Dynamic Systems. Journal of Applied Mechanics, 47(3), 627-630. doi:10.1115/1.3153744 | es_ES |
dc.description.references | Papagyri-Beskou, S., & Beskos, D. E. (2002). On critical viscous damping determination in linear discrete dynamic systems. Acta Mechanica, 153(1-2), 33-45. doi:10.1007/bf01177049 | es_ES |
dc.description.references | Muravyov, A. (1998). FORCED VIBRATION RESPONSES OF A VISCOELASTIC STRUCTURE. Journal of Sound and Vibration, 218(5), 892-907. doi:10.1006/jsvi.1998.1819 | es_ES |
dc.description.references | Muller, P. (2005). Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not? Journal of Sound and Vibration, 285(1-2), 501-509. doi:10.1016/j.jsv.2004.09.007 | es_ES |
dc.description.references | Muravyov, A., & Hutton, S. G. (1998). Free Vibration Response Characteristics of a Simple Elasto-Hereditary System. Journal of Vibration and Acoustics, 120(2), 628-632. doi:10.1115/1.2893873 | es_ES |
dc.description.references | Lázaro, M. (2019). Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems. Mathematics and Mechanics of Solids, 24(12), 3843-3861. doi:10.1177/1081286519858382 | es_ES |
dc.description.references | Pierro, E. (2020). Damping control in viscoelastic beam dynamics. Journal of Vibration and Control, 26(19-20), 1753-1764. doi:10.1177/1077546320903195 | es_ES |
dc.description.references | Lázaro, M. (2019). Approximate critical curves in exponentially damped nonviscous systems. Mechanical Systems and Signal Processing, 122, 720-736. doi:10.1016/j.ymssp.2018.12.044 | es_ES |
dc.description.references | Caughey, T. K., & O’Kelly, M. E. J. (1965). Classical Normal Modes in Damped Linear Dynamic Systems. Journal of Applied Mechanics, 32(3), 583-588. doi:10.1115/1.3627262 | es_ES |
dc.description.references | Adhikari, S. (2006). Damping modelling using generalized proportional damping. Journal of Sound and Vibration, 293(1-2), 156-170. doi:10.1016/j.jsv.2005.09.034 | es_ES |
dc.description.references | Adhiakri, S. (2001). Classical Normal Modes in Nonviscously Damped Linear Systems. AIAA Journal, 39(5), 978-980. doi:10.2514/2.1409 | es_ES |
dc.description.references | Lewandowski, R., & Przychodzki, M. (2018). Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers. Archive of Applied Mechanics, 88(10), 1695-1711. doi:10.1007/s00419-018-1394-6 | es_ES |
dc.description.references | Litewka, P., & Lewandowski, R. (2020). Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature. Computers & Structures, 229, 106181. doi:10.1016/j.compstruc.2019.106181 | es_ES |
dc.description.references | Biot, M. A. (1954). Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena. Journal of Applied Physics, 25(11), 1385-1391. doi:10.1063/1.1721573 | es_ES |
dc.description.references | ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 43-61. doi:10.1006/jsvi.2000.3391 | es_ES |
dc.description.references | ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 2, NON-VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 63-88. doi:10.1006/jsvi.2000.3392 | es_ES |
dc.description.references | Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 | es_ES |