- -

Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy

Mostrar el registro completo del ítem

Payri, R.; Novella Rosa, R.; Carreres, M.; Belmar-Gil, M. (2020). Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 234(11):1788-1810. https://doi.org/10.1177/0954410020919619

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166848

Ficheros en el ítem

Metadatos del ítem

Título: Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy
Autor: Payri, Raul Novella Rosa, Ricardo Carreres, Marcos Belmar-Gil, Mario
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Fuel efficiency improvement and harmful emissions reduction are the main motivations for the development of gas turbine combustors. Numerical computational fluid dynamics (CFD) simulations of these devices are usually ...[+]
Palabras clave: Gas turbine combustor , Turbulent swirling flow , U-RANS , Large eddy simulation , Adaptive mesh refinement , Non-reactive flow , CONVERGE (TM)
Derechos de uso: Reserva de todos los derechos
Fuente:
Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. (issn: 0954-4100 )
DOI: 10.1177/0954410020919619
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/0954410020919619
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/UPV//SP20180178/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion ...[+]
Tipo: Artículo

References

Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor. Proceedings of the Combustion Institute, 31(2), 2327-2334. doi:10.1016/j.proci.2006.07.232

Luo, K., Pitsch, H., Pai, M. G., & Desjardins, O. (2011). Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 33(2), 2143-2152. doi:10.1016/j.proci.2010.06.077

Masri, A. R., Pope, S. B., & Dally, B. B. (2000). Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 28(1), 123-131. doi:10.1016/s0082-0784(00)80203-9 [+]
Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor. Proceedings of the Combustion Institute, 31(2), 2327-2334. doi:10.1016/j.proci.2006.07.232

Luo, K., Pitsch, H., Pai, M. G., & Desjardins, O. (2011). Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 33(2), 2143-2152. doi:10.1016/j.proci.2010.06.077

Masri, A. R., Pope, S. B., & Dally, B. B. (2000). Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 28(1), 123-131. doi:10.1016/s0082-0784(00)80203-9

Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O., & Cheng, R. K. (2005). A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proceedings of the Combustion Institute, 30(2), 2867-2874. doi:10.1016/j.proci.2004.07.040

Sankaran, V., & Menon †, S. (2002). LES of spray combustion in swirling flows. Journal of Turbulence, 3, N11. doi:10.1088/1468-5248/3/1/011

Jones, W. P., Marquis, A. J., & Vogiatzaki, K. (2014). Large-eddy simulation of spray combustion in a gas turbine combustor. Combustion and Flame, 161(1), 222-239. doi:10.1016/j.combustflame.2013.07.016

Ding, G., He, X., Xue, C., Zhao, Z., & Jin, Y. (2015). Preliminary design and experimental verification of a triple swirler combustor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(12), 2258-2271. doi:10.1177/0954410015573555

Menon, S., & Patel, N. (2006). Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors. AIAA Journal, 44(4), 709-723. doi:10.2514/1.14875

Wang, P., Platova, N. A., Fröhlich, J., & Maas, U. (2014). Large Eddy Simulation of the PRECCINSTA burner. International Journal of Heat and Mass Transfer, 70, 486-495. doi:10.1016/j.ijheatmasstransfer.2013.11.025

Cordier, M., Vandel, A., Cabot, G., Renou, B., & Boukhalfa, A. M. (2013). Laser-Induced Spark Ignition of Premixed Confined Swirled Flames. Combustion Science and Technology, 185(3), 379-407. doi:10.1080/00102202.2012.725791

Patel, N., & Menon, S. (2008). Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combustion and Flame, 153(1-2), 228-257. doi:10.1016/j.combustflame.2007.09.011

Bang, B.-H., Kim, Y.-I., Jeong, S., Yoon, Y., Yarin, A. L., & Yoon, S. S. (2019). Theoretical model for swirling thin film flows inside nozzles with converging-diverging shapes. Applied Mathematical Modelling, 76, 607-616. doi:10.1016/j.apm.2019.06.025

Linne, M., Paciaroni, M., Hall, T., & Parker, T. (2006). Ballistic imaging of the near field in a diesel spray. Experiments in Fluids, 40(6), 836-846. doi:10.1007/s00348-006-0122-0

Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8

Reddemann, M. A., Mathieu, F., & Kneer, R. (2013). Transmitted light microscopy for visualizing the turbulent primary breakup of a microscale liquid jet. Experiments in Fluids, 54(11). doi:10.1007/s00348-013-1607-2

Chen, R.-H., & Driscoll, J. F. (1989). The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Symposium (International) on Combustion, 22(1), 531-540. doi:10.1016/s0082-0784(89)80060-8

Presser, C., Gupta, A. K., & Semerjian, H. G. (1993). Aerodynamic characteristics of swirling spray flames: Pressure-jet atomizer. Combustion and Flame, 92(1-2), 25-44. doi:10.1016/0010-2180(93)90196-a

Bulzan, D. L. (1995). Structure of a swirl-stabilized combusting spray. Journal of Propulsion and Power, 11(6), 1093-1102. doi:10.2514/3.23946

Sommerfeld, M., & Qiu, H.-H. (1998). Experimental studies of spray evaporation in turbulent flow. International Journal of Heat and Fluid Flow, 19(1), 10-22. doi:10.1016/s0142-727x(97)10002-9

Hadef, R., & Lenze, B. (2005). Measurements of droplets characteristics in a swirl-stabilized spray flame. Experimental Thermal and Fluid Science, 30(2), 117-130. doi:10.1016/j.expthermflusci.2005.05.002

Soltani, M. R., Ghorbanian, K., Ashjaee, M., & Morad, M. R. (2005). Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates. Aerospace Science and Technology, 9(7), 592-604. doi:10.1016/j.ast.2005.04.004

Tratnig, A., & Brenn, G. (2010). Drop size spectra in sprays from pressure-swirl atomizers. International Journal of Multiphase Flow, 36(5), 349-363. doi:10.1016/j.ijmultiphaseflow.2010.01.008

Asgari, B., & Amani, E. (2017). A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Applied Energy, 203, 696-710. doi:10.1016/j.apenergy.2017.06.080

Moureau, V., Domingo, P., & Vervisch, L. (2011). From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combustion and Flame, 158(7), 1340-1357. doi:10.1016/j.combustflame.2010.12.004

Caraeni, D., Bergström, C., & Fuchs, L. (2000). Flow, Turbulence and Combustion, 65(2), 223-244. doi:10.1023/a:1011428926494

Icardi, M., Gavi, E., Marchisio, D. L., Olsen, M. G., Fox, R. O., & Lakehal, D. (2011). Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Applied Mathematical Modelling, 35(4), 1591-1602. doi:10.1016/j.apm.2010.09.035

Sankaran, V., & Menon, S. (2002). Vorticity-scalar alignments and small-scale structures in swirling spray combustion. Proceedings of the Combustion Institute, 29(1), 577-584. doi:10.1016/s1540-7489(02)80074-8

Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005

Zhou, Y., Huang, Y., & Mu, Z. (2017). Large eddy simulation of the influence of synthetic inlet turbulence on a practical aeroengine combustor with counter-rotating swirler. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(3), 978-990. doi:10.1177/0954410017745900

Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007

Xu, L., Bai, X.-S., Jia, M., Qian, Y., Qiao, X., & Lu, X. (2018). Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system. Applied Energy, 230, 287-304. doi:10.1016/j.apenergy.2018.08.104

Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106

Esclapez, L., Riber, E., & Cuenot, B. (2015). Ignition probability of a partially premixed burner using LES. Proceedings of the Combustion Institute, 35(3), 3133-3141. doi:10.1016/j.proci.2014.07.040

Rhie, C. M., & Chow, W. L. (1983). Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11), 1525-1532. doi:10.2514/3.8284

Gousseau, P., Blocken, B., & van Heijst, G. J. F. (2013). Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Computers & Fluids, 79, 120-133. doi:10.1016/j.compfluid.2013.03.006

Hanna, S. ., Tehranian, S., Carissimo, B., Macdonald, R. ., & Lohner, R. (2002). Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmospheric Environment, 36(32), 5067-5079. doi:10.1016/s1352-2310(02)00566-6

Hanna, S. R., Hansen, O. R., & Dharmavaram, S. (2004). FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmospheric Environment, 38(28), 4675-4687. doi:10.1016/j.atmosenv.2004.05.041

Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424

Blazek, J. (2015). Turbulence Modeling. Computational Fluid Dynamics: Principles and Applications, 213-252. doi:10.1016/b978-0-08-099995-1.00007-5

Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035

Celik, I. B., Cehreli, Z. N., & Yavuz, I. (2005). Index of Resolution Quality for Large Eddy Simulations. Journal of Fluids Engineering, 127(5), 949-958. doi:10.1115/1.1990201

Celik, I., Klein, M., & Janicka, J. (2009). Assessment Measures for Engineering LES Applications. Journal of Fluids Engineering, 131(3). doi:10.1115/1.3059703

Ivanic, T., Foucault, E., & Pecheux, J. (2003). Dynamics of swirling jet flows. Experiments in Fluids, 35(4), 317-324. doi:10.1007/s00348-003-0646-5

Huang, Y., & Yang, V. (2009). Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science, 35(4), 293-364. doi:10.1016/j.pecs.2009.01.002

Syred, N., & Beér, J. M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23(2), 143-201. doi:10.1016/0010-2180(74)90057-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem