- -

Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Carreres, Marcos es_ES
dc.contributor.author Belmar-Gil, Mario es_ES
dc.date.accessioned 2021-05-27T03:35:39Z
dc.date.available 2021-05-27T03:35:39Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0954-4100 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166848
dc.description.abstract [EN] Fuel efficiency improvement and harmful emissions reduction are the main motivations for the development of gas turbine combustors. Numerical computational fluid dynamics (CFD) simulations of these devices are usually computationally expensive since they imply a multi-scale problem. In this work, gaseous non-reactive unsteady Reynolds-Averaged Navier-Stokes and large eddy simulations of a gaseous-fueled radial-swirled lean direct injection combustor have been carried out through CONVERGE (TM) CFD code by solving the complete inlet flow path through the swirl vanes and the combustor. The geometry considered is the gaseous configuration of the CORIA lean direct injection combustor, for which detailed measurements are available. The emphasis of the work is placed on the demonstration of the CONVERGE (TM) applicability to the multi-scale gas turbine engines field and the determination of an optimal mesh strategy through several grid control tools (i.e., local refinement, adaptive mesh refinement) allowing the exploitation of its automatic mesh generation against traditional fixed mesh approaches. For this purpose, the normalized mean square error has been adopted to quantify the accuracy of turbulent numerical statistics regarding the agreement with the experimental database. Furthermore, the focus of the work is to study the behavior when coupling several large eddy simulation sub-grid scale models (i.e., Smagorinsky, Dynamic Smagorinsky, and Dynamic Structure) with the adaptive mesh refinement algorithm through the evaluation of its specific performances and predictive capabilities in resolving the spatial-temporal scales and the intrinsically unsteady flow structures generated within the combustor. This investigation on the main non-reacting swirling flow characteristics inside the combustor provides a suitable background for further studies on combustion instability mechanisms. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partly sponsored by the program "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Spain.'' The support given to Mr. Mario Belmar by Universitat Politecnica de Valencia through the "FPI-Subprograma 2'' grant within the "Programa de Apoyo para la Investigacion y Desarrollo (PAID-01-18)'' is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gas turbine combustor es_ES
dc.subject Turbulent swirling flow es_ES
dc.subject U-RANS es_ES
dc.subject Large eddy simulation es_ES
dc.subject Adaptive mesh refinement es_ES
dc.subject Non-reactive flow es_ES
dc.subject CONVERGE (TM) es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954410020919619 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180178/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Novella Rosa, R.; Carreres, M.; Belmar-Gil, M. (2020). Modeling gaseous non-reactive flow in a lean direct injection gas turbine combustor through an advanced mesh control strategy. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 234(11):1788-1810. https://doi.org/10.1177/0954410020919619 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0954410020919619 es_ES
dc.description.upvformatpinicio 1788 es_ES
dc.description.upvformatpfin 1810 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 234 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\417346 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor. Proceedings of the Combustion Institute, 31(2), 2327-2334. doi:10.1016/j.proci.2006.07.232 es_ES
dc.description.references Luo, K., Pitsch, H., Pai, M. G., & Desjardins, O. (2011). Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 33(2), 2143-2152. doi:10.1016/j.proci.2010.06.077 es_ES
dc.description.references Masri, A. R., Pope, S. B., & Dally, B. B. (2000). Probability density function computations of a strongly swirling nonpremixed flame stabilized on a new burner. Proceedings of the Combustion Institute, 28(1), 123-131. doi:10.1016/s0082-0784(00)80203-9 es_ES
dc.description.references Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O., & Cheng, R. K. (2005). A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proceedings of the Combustion Institute, 30(2), 2867-2874. doi:10.1016/j.proci.2004.07.040 es_ES
dc.description.references Sankaran, V., & Menon †, S. (2002). LES of spray combustion in swirling flows. Journal of Turbulence, 3, N11. doi:10.1088/1468-5248/3/1/011 es_ES
dc.description.references Jones, W. P., Marquis, A. J., & Vogiatzaki, K. (2014). Large-eddy simulation of spray combustion in a gas turbine combustor. Combustion and Flame, 161(1), 222-239. doi:10.1016/j.combustflame.2013.07.016 es_ES
dc.description.references Ding, G., He, X., Xue, C., Zhao, Z., & Jin, Y. (2015). Preliminary design and experimental verification of a triple swirler combustor. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(12), 2258-2271. doi:10.1177/0954410015573555 es_ES
dc.description.references Menon, S., & Patel, N. (2006). Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors. AIAA Journal, 44(4), 709-723. doi:10.2514/1.14875 es_ES
dc.description.references Wang, P., Platova, N. A., Fröhlich, J., & Maas, U. (2014). Large Eddy Simulation of the PRECCINSTA burner. International Journal of Heat and Mass Transfer, 70, 486-495. doi:10.1016/j.ijheatmasstransfer.2013.11.025 es_ES
dc.description.references Cordier, M., Vandel, A., Cabot, G., Renou, B., & Boukhalfa, A. M. (2013). Laser-Induced Spark Ignition of Premixed Confined Swirled Flames. Combustion Science and Technology, 185(3), 379-407. doi:10.1080/00102202.2012.725791 es_ES
dc.description.references Patel, N., & Menon, S. (2008). Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combustion and Flame, 153(1-2), 228-257. doi:10.1016/j.combustflame.2007.09.011 es_ES
dc.description.references Bang, B.-H., Kim, Y.-I., Jeong, S., Yoon, Y., Yarin, A. L., & Yoon, S. S. (2019). Theoretical model for swirling thin film flows inside nozzles with converging-diverging shapes. Applied Mathematical Modelling, 76, 607-616. doi:10.1016/j.apm.2019.06.025 es_ES
dc.description.references Linne, M., Paciaroni, M., Hall, T., & Parker, T. (2006). Ballistic imaging of the near field in a diesel spray. Experiments in Fluids, 40(6), 836-846. doi:10.1007/s00348-006-0122-0 es_ES
dc.description.references Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8 es_ES
dc.description.references Reddemann, M. A., Mathieu, F., & Kneer, R. (2013). Transmitted light microscopy for visualizing the turbulent primary breakup of a microscale liquid jet. Experiments in Fluids, 54(11). doi:10.1007/s00348-013-1607-2 es_ES
dc.description.references Chen, R.-H., & Driscoll, J. F. (1989). The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Symposium (International) on Combustion, 22(1), 531-540. doi:10.1016/s0082-0784(89)80060-8 es_ES
dc.description.references Presser, C., Gupta, A. K., & Semerjian, H. G. (1993). Aerodynamic characteristics of swirling spray flames: Pressure-jet atomizer. Combustion and Flame, 92(1-2), 25-44. doi:10.1016/0010-2180(93)90196-a es_ES
dc.description.references Bulzan, D. L. (1995). Structure of a swirl-stabilized combusting spray. Journal of Propulsion and Power, 11(6), 1093-1102. doi:10.2514/3.23946 es_ES
dc.description.references Sommerfeld, M., & Qiu, H.-H. (1998). Experimental studies of spray evaporation in turbulent flow. International Journal of Heat and Fluid Flow, 19(1), 10-22. doi:10.1016/s0142-727x(97)10002-9 es_ES
dc.description.references Hadef, R., & Lenze, B. (2005). Measurements of droplets characteristics in a swirl-stabilized spray flame. Experimental Thermal and Fluid Science, 30(2), 117-130. doi:10.1016/j.expthermflusci.2005.05.002 es_ES
dc.description.references Soltani, M. R., Ghorbanian, K., Ashjaee, M., & Morad, M. R. (2005). Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates. Aerospace Science and Technology, 9(7), 592-604. doi:10.1016/j.ast.2005.04.004 es_ES
dc.description.references Tratnig, A., & Brenn, G. (2010). Drop size spectra in sprays from pressure-swirl atomizers. International Journal of Multiphase Flow, 36(5), 349-363. doi:10.1016/j.ijmultiphaseflow.2010.01.008 es_ES
dc.description.references Asgari, B., & Amani, E. (2017). A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Applied Energy, 203, 696-710. doi:10.1016/j.apenergy.2017.06.080 es_ES
dc.description.references Moureau, V., Domingo, P., & Vervisch, L. (2011). From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling. Combustion and Flame, 158(7), 1340-1357. doi:10.1016/j.combustflame.2010.12.004 es_ES
dc.description.references Caraeni, D., Bergström, C., & Fuchs, L. (2000). Flow, Turbulence and Combustion, 65(2), 223-244. doi:10.1023/a:1011428926494 es_ES
dc.description.references Icardi, M., Gavi, E., Marchisio, D. L., Olsen, M. G., Fox, R. O., & Lakehal, D. (2011). Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Applied Mathematical Modelling, 35(4), 1591-1602. doi:10.1016/j.apm.2010.09.035 es_ES
dc.description.references Sankaran, V., & Menon, S. (2002). Vorticity-scalar alignments and small-scale structures in swirling spray combustion. Proceedings of the Combustion Institute, 29(1), 577-584. doi:10.1016/s1540-7489(02)80074-8 es_ES
dc.description.references Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005 es_ES
dc.description.references Zhou, Y., Huang, Y., & Mu, Z. (2017). Large eddy simulation of the influence of synthetic inlet turbulence on a practical aeroengine combustor with counter-rotating swirler. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(3), 978-990. doi:10.1177/0954410017745900 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., García-Tíscar, J., & Gomez-Soriano, J. (2018). Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combustion and Flame, 188, 469-482. doi:10.1016/j.combustflame.2017.10.007 es_ES
dc.description.references Xu, L., Bai, X.-S., Jia, M., Qian, Y., Qiao, X., & Lu, X. (2018). Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system. Applied Energy, 230, 287-304. doi:10.1016/j.apenergy.2018.08.104 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 es_ES
dc.description.references Esclapez, L., Riber, E., & Cuenot, B. (2015). Ignition probability of a partially premixed burner using LES. Proceedings of the Combustion Institute, 35(3), 3133-3141. doi:10.1016/j.proci.2014.07.040 es_ES
dc.description.references Rhie, C. M., & Chow, W. L. (1983). Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11), 1525-1532. doi:10.2514/3.8284 es_ES
dc.description.references Gousseau, P., Blocken, B., & van Heijst, G. J. F. (2013). Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Computers & Fluids, 79, 120-133. doi:10.1016/j.compfluid.2013.03.006 es_ES
dc.description.references Hanna, S. ., Tehranian, S., Carissimo, B., Macdonald, R. ., & Lohner, R. (2002). Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmospheric Environment, 36(32), 5067-5079. doi:10.1016/s1352-2310(02)00566-6 es_ES
dc.description.references Hanna, S. R., Hansen, O. R., & Dharmavaram, S. (2004). FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmospheric Environment, 38(28), 4675-4687. doi:10.1016/j.atmosenv.2004.05.041 es_ES
dc.description.references Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520. doi:10.1063/1.858424 es_ES
dc.description.references Blazek, J. (2015). Turbulence Modeling. Computational Fluid Dynamics: Principles and Applications, 213-252. doi:10.1016/b978-0-08-099995-1.00007-5 es_ES
dc.description.references Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 es_ES
dc.description.references Celik, I. B., Cehreli, Z. N., & Yavuz, I. (2005). Index of Resolution Quality for Large Eddy Simulations. Journal of Fluids Engineering, 127(5), 949-958. doi:10.1115/1.1990201 es_ES
dc.description.references Celik, I., Klein, M., & Janicka, J. (2009). Assessment Measures for Engineering LES Applications. Journal of Fluids Engineering, 131(3). doi:10.1115/1.3059703 es_ES
dc.description.references Ivanic, T., Foucault, E., & Pecheux, J. (2003). Dynamics of swirling jet flows. Experiments in Fluids, 35(4), 317-324. doi:10.1007/s00348-003-0646-5 es_ES
dc.description.references Huang, Y., & Yang, V. (2009). Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science, 35(4), 293-364. doi:10.1016/j.pecs.2009.01.002 es_ES
dc.description.references Syred, N., & Beér, J. M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23(2), 143-201. doi:10.1016/0010-2180(74)90057-1 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem